1.Clinical features of patients with recurrent primary common bile duct stones after cholecystectomy
Jianhui LU ; Yongli LI ; Ruifang GUO ; Rongquan XUE
Journal of Clinical Hepatology 2025;41(1):118-126
ObjectiveTo investigate the general situation, dietary factors, and clinical features of patients with recurrent primary common bile duct stones, and to provide a basis for effective prevention of stone recurrence. MethodsA retrospective analysis was performed for 23 730 patients who underwent cholecystectomy due to cholelithiasis in Department of Hepatobiliary, Pancreatic and Spleen Surgery, Inner Mongolia People’s Hospital, from January 2013 to December 2023, and according to the presence or absence of recurrence of primary common bile duct stones after surgery, 334 patients were divided into recurrence group. The recurrence group was further analyzed based on sex in terms of recurrence rate, recurrence cycle, recurrence age, recurrence type, and general, disease, imaging, and dietary factors. The independent-samples t test was used for comparison of continuous data between two groups, the chi-square test was used for comparison of categorical data between two groups. ResultsThere were 334 cases of recurrence of primary bile duct stones after cholecystectomy, with a recurrence rate of 1.41%, and the highest frequency of recurrence cycle was observed in 10 years after surgery, with a significant difference in recurrence cycle between the male and female patients (t=5.238, P<0.001). There was a significant difference in the recurrence rate of stones after surgery between the patients with simple gallstones and those with gallbladder and common bile duct stones at initial diagnosis (1.23% vs 2.76%, χ2=42.104, P<0.001). The patients with recurrence aged >60 years accounted for the highest proportion in the whole population and in both male and female populations, and 92% were Han residents; 10% of the patients with recurrence had a family history of gallstones, and as for comorbidities, the patients with hypertension accounted for the highest proportion. Among the patients with recurrence, the patients with smoking or drinking accounted for 76.7% and 10.3%, respectively. As for body weight, 63.8% of the patients with recurrence had a normal body mass index (BMI), and 23.2% of the patients were overweight; compared with body weight at the time of the first gallbladder surgery, a reduction in body weight was observed in 60.1% of the patients with recurrence, while an increase in body weight was observed in 22.9% of the patients with recurrence. There were significant differences between the male and female patients with recurrence in age composition, ethnicity, the type of place of residence, comorbidities, smoking, drinking, BMI, and the change in body weight (all P<0.001). As for the type of stone recurrence, the ratio of multiple stones, solitary stones, and muddy stones was 74∶15∶11, and the stone size of <1 cm, 1-2 cm, and >2 cm accounted for about 40.5%, 48.8%, and 10.6%, respectively. As for the surgical procedure, the patients undergoing laparotomy accounted for 66.1%, and those undergoing laparoscopy accounted for 33.9%. The patients with various types of dyslipidemia accounted for a percentage of<30%. There were significant differences between the male and female patients with recurrence in the type of stones at initial onset, the type and size of stones, and surgical procedure (all P<0.001). Imaging data showed that 4 patients had an abnormal structure of the bile duct, manifesting as long and curve cystic ducts, and 73.1% of the patients had common bile duct dilatation after surgery. The follow-up of dietary factors showed irregular diets in 55.8% of the patients with recurrence. As for the dietary structure, meat and staple food accounted for 43.8% and 37.8%, respectively, which showed a sex difference, with meat in male patients and staple food in female patients; 64.1% of the patients with recurrence had a high-salt and high-oil diet; 59.8% of the patients had changes in diet after the first surgery for stones, among whom 80% were able to have a regular diet, and the patients with a regular diet accounted for 92%. ConclusionThere is a relatively low recurrence rate of primary common bile duct stones in this area, and there is no sex difference. The peak of recurrence is 10 years after surgery, and recurrence of stones is mainly observed in the population aged >60 years. The analysis of dietary and clinical features can help doctors and patients to further understand the characteristics of the recurrence of primary common bile duct stones and provide a basis for subsequent targeted prevention.
2.Gradient artificial bone repair scaffold regulates skeletal system tissue repair and regeneration
Yu ZHANG ; Ruian XU ; Lei FANG ; Longfei LI ; Shuyan LIU ; Lingxue DING ; Yuexi WANG ; Ziyan GUO ; Feng TIAN ; Jiajia XUE
Chinese Journal of Tissue Engineering Research 2025;29(4):846-855
BACKGROUND:Gradient artificial bone repair scaffolds can mimic unique anatomical features in musculoskeletal tissues,showing great potential for repairing injured musculoskeletal tissues. OBJECTIVE:To review the latest research advances in gradient artificial bone repair scaffolds for tissue engineering in the musculoskeletal system and describe their advantages and fabrication strategies. METHODS:The first author of the article searched the Web of Science and PubMed databases for articles published from 2000 to 2023 with search terms"gradient,bone regeneration,scaffold".Finally,76 papers were analyzed and summarized after the screening. RESULTS AND CONCLUSION:(1)As an important means of efficient and high-quality repair of skeletal system tissues,gradient artificial bone repair scaffolds are currently designed bionically for the natural gradient characteristics of bone tissue,bone-cartilage,and tendon-bone tissue.These scaffolds can mimic the extracellular matrix of native tissues to a certain extent in terms of structure and composition,thus promoting cell adhesion,migration,proliferation,differentiation,and regenerative recovery of damaged tissues to their native state.(2)Advanced manufacturing technology provides more possibilities for gradient artificial bone repair scaffold preparation:Gradient electrospun fiber scaffolds constructed by spatially differentiated fiber arrangement and loading of biologically active substances have been developed;gradient 3D printed scaffolds fabricated by layered stacking,graded porosity,and bio-3D printing technology;gradient hydrogel scaffolds fabricated by in-situ layered injections,simple layer-by-layer stacking,and freeze-drying method;and in addition,there are also scaffolds made by other modalities or multi-method coupling.These scaffolds have demonstrated good biocompatibility in vitro experiments,were able to accelerate tissue regeneration in small animal tests,and were observed to have significantly improved histological structure.(3)The currently developed gradient artificial bone repair scaffolds have problems such as mismatch of gradient scales,unclear material-tissue interactions,and side effects caused by degradation products,which need to be further optimized by combining the strengths of related disciplines and clinical needs in the future.
3.The mechanism of Laggerae Herba in improving chronic heart failure by inhibiting ferroptosis through the Nrf2/SLC7A11/GPX4 signaling pathway
Jinling XIAO ; Kai HUANG ; Xiaoqi WEI ; Xinyi FAN ; Wangjing CHAI ; Jing HAN ; Kuo GAO ; Xue YU ; Fanghe LI ; Shuzhen GUO
Journal of Beijing University of Traditional Chinese Medicine 2025;48(3):343-353
Objective:
To investigate the role and mechanism of the heat-clearing and detoxifying drug Laggerae Herba in regulating the nuclear factor-erythroid 2-related factor-2(Nrf2)/solute carrier family 7 member 11 (SLC7A11)/glutathione peroxidase 4 (GPX4) signaling pathway to inhibit ferroptosis and improve chronic heart failure induced by transverse aortic arch constriction in mice.
Methods:
Twenty-four male ICR mice were divided into the sham (n=6) and transverse aortic arch constriction groups (n=18) according to the random number table method. The transverse aortic arch constriction group underwent transverse aortic constriction surgery to establish models. After modeling, the transverse aortic arch constriction group was further divided into the model, captopril, and Laggerae Herba groups according to the random number table method, with six mice per group. The captopril (15 mg/kg) and Laggerae Herba groups (1.95 g/kg) received the corresponding drugs by gavage, whereas the sham operation and model groups were administered the same volume of ultrapure water by gavage once a day for four consecutive weeks. After treatment, the cardiac function indexes of mice in each group were detected using ultrasound. The heart mass and tibia length were measured to calculate the ratio of heart weight to tibia length. Hematoxylin and eosin staining were used to observe the pathological changes in myocardial tissue. Masson staining was used to observe the degree of myocardial fibrosis. Wheat germ agglutinin staining was used to observe the degree of myocardial cell hypertrophy. Prussian blue staining was used to observe the iron deposition in myocardial tissue. An enzyme-linked immunosorbent assay was used to detect the amino-terminal pro-brain natriuretic peptide (NT-proBNP) and glutathione (GSH) contents in mice serum. Colorimetry was used to detect the malondialdehyde (MDA) content in mice serum. Western blotting was used to detect the Nrf2, GPX4, SLC7A11, and ferritin heavy chain 1 (FTH1) protein expressions in mice cardiac tissue.
Results:
Compared with the sham group, in the model group, the ejection fraction (EF) and fractional shortening (FS) of mice decreased, the left ventricular end-systolic volume (LVESV) and left ventricular end-systolic diameter (LVESD) increased, the left ventricular anterior wall end-systolic thickness (LVAWs) and left ventricular posterior wall end-systolic thickness (LVPWs) decreased, the ratio of heart weight to tibia length increased, the myocardial tissue morphology changed, myocardial fibrosis increased, the cross-sectional area of myocardial cells increased, iron deposition appeared in myocardial tissue, the serum NT-proBNP and MDA levels increased, the GSH level decreased, and Nrf2, GPX4, SLC7A11, and FTH1 protein expressions in cardiac tissue decreased (P<0.05). Compared with the model group, in the captopril and Laggerae Herba groups, the EF, FS, and LVAWs increased, the LVESV and LVESD decreased, the ratio of heart weight to tibia length decreased, the myocardial cells were arranged neatly, the degree of myocardial fibrosis decreased, the cross-sectional area of myocardial cells decreased, the serum NT-proBNP level decreased, and the GSH level increased. Compared with the model group, the LVPWs increased, the iron deposition in myocardial tissue decreased, the serum MDA level decreased, and Nrf2, GPX4, SLC7A11, and FTH1 protein expressions in cardiac tissue increased (P<0.05) in the Laggerae Herba group.
Conclusion
Laggerae Herba improves the cardiac function of mice with chronic heart failure caused by transverse aortic arch constriction, reduces the pathological remodeling of the heart, and reduces fibrosis. Its mechanism may be related to Nrf2/SLC7A11/GPX4 pathway-mediated ferroptosis.
4.In situ Analytical Techniques for Membrane Protein Interactions
Zi-Yuan KANG ; Tong YU ; Chao LI ; Xue-Hua ZHANG ; Jun-Hui GUO ; Qi-Chang LI ; Jing-Xing GUO ; Hao XIE
Progress in Biochemistry and Biophysics 2025;52(5):1206-1218
Membrane proteins are integral components of cellular membranes, accounting for approximately 30% of the mammalian proteome and serving as targets for 60% of FDA-approved drugs. They are critical to both physiological functions and disease mechanisms. Their functional protein-protein interactions form the basis for many physiological processes, such as signal transduction, material transport, and cell communication. Membrane protein interactions are characterized by membrane environment dependence, spatial asymmetry, weak interaction strength, high dynamics, and a variety of interaction sites. Therefore, in situ analysis is essential for revealing the structural basis and kinetics of these proteins. This paper introduces currently available in situ analytical techniques for studying membrane protein interactions and evaluates the characteristics of each. These techniques are divided into two categories: label-based techniques (e.g., co-immunoprecipitation, proximity ligation assay, bimolecular fluorescence complementation, resonance energy transfer, and proximity labeling) and label-free techniques (e.g., cryo-electron tomography, in situ cross-linking mass spectrometry, Raman spectroscopy, electron paramagnetic resonance, nuclear magnetic resonance, and structure prediction tools). Each technique is critically assessed in terms of its historical development, strengths, and limitations. Based on the authors’ relevant research, the paper further discusses the key issues and trends in the application of these techniques, providing valuable references for the field of membrane protein research. Label-based techniques rely on molecular tags or antibodies to detect proximity or interactions, offering high specificity and adaptability for dynamic studies. For instance, proximity ligation assay combines the specificity of antibodies with the sensitivity of PCR amplification, while proximity labeling enables spatial mapping of interactomes. Conversely, label-free techniques, such as cryo-electron tomography, provide near-native structural insights, and Raman spectroscopy directly probes molecular interactions without perturbing the membrane environment. Despite advancements, these methods face several universal challenges: (1) indirect detection, relying on proximity or tagged proxies rather than direct interaction measurement; (2) limited capacity for continuous dynamic monitoring in live cells; and (3) potential artificial influences introduced by labeling or sample preparation, which may alter native conformations. Emerging trends emphasize the multimodal integration of complementary techniques to overcome individual limitations. For example, combining in situ cross-linking mass spectrometry with proximity labeling enhances both spatial resolution and interaction coverage, enabling high-throughput subcellular interactome mapping. Similarly, coupling fluorescence resonance energy transfer with nuclear magnetic resonance and artificial intelligence (AI) simulations integrates dynamic structural data, atomic-level details, and predictive modeling for holistic insights. Advances in AI, exemplified by AlphaFold’s ability to predict interaction interfaces, further augment experimental data, accelerating structure-function analyses. Future developments in cryo-electron microscopy, super-resolution imaging, and machine learning are poised to refine spatiotemporal resolution and scalability. In conclusion, in situ analysis of membrane protein interactions remains indispensable for deciphering their roles in health and disease. While current technologies have significantly advanced our understanding, persistent gaps highlight the need for innovative, integrative approaches. By synergizing experimental and computational tools, researchers can achieve multiscale, real-time, and perturbation-free analyses, ultimately unraveling the dynamic complexity of membrane protein networks and driving therapeutic discovery.
5.Research progress on the pathogenesis of central retinal vein occlusion
Qi HAN ; Xue HAN ; Xingchen GUO ; Yuanhui YANG ; Yuanmin LI ; Yufang TENG
International Eye Science 2025;25(8):1261-1266
Central retinal vein occlusion(CRVO)is a retinal vascular disorder that significantly impairs vision, with its underlying mechanisms involving complex interactions across multiple biological systems. This article provides a systematic review of the pathological mechanisms associated with CRVO, emphasizing critical factors such as endothelial dysfunction, arteriosclerosis, thrombophilia, inflammation, and oxidative stress. The pathological mechanisms of CRVO are characterized by arteriosclerosis, which obstructs venous return through a dual mechanism involving mechanical compression and endothelin-1-mediated contraction; endothelial dysfunction, which exacerbates disturbances in blood flow; genetic and acquired coagulation abnormalities that disrupt hemostatic balance and promote thrombosis; and the synergistic effects of inflammation and oxidative stress that activate cytokines, thereby aggravating ischemia and vascular leakage. Innovatively, this review explores emerging mechanisms such as miRNA-mediated vascular regulation via exosomes, gut microbiota-retina crosstalk through the “gut-eye axis,” and systemic metabolic interactions that link local retinal lesions to broader dysregulation of CRVO. These insights underscore the importance of integrated eye-system interventions and provide a theoretical foundation for advancing early biomarker discovery, multitarget therapeutics, and personalized treatment paradigms. By bridging localized pathology and systemic mechanisms, this work promotes a transformative shift toward an integrative medicine model in the diagnosis and management of CRVO.
6.Establishment and evaluation of an animal model of heart failure with preserved ejection fraction integrating disease and syndrome based on the "deficiency-blood stasis-toxin" pathogenesis
Xiaoqi WEI ; Xinyi FAN ; Feng JIANG ; Wangjing CHAI ; Jinling XIAO ; Fanghe LI ; Kuo GAO ; Xue YU ; Wei WANG ; Shuzhen GUO
Journal of Beijing University of Traditional Chinese Medicine 2025;48(4):501-515
Objective:
This study aimed to construct an animal model of heart failure with preserved ejection fraction (HFpEF) that integrates disease and syndrome based on the "deficiency-blood stasis-toxin" pathogenesis and to evaluate it comprehensively.
Methods:
The HFpEF mouse model was constructed using a combination of Nω-nitro-L-arginine methyl ester (L-NAME) and a high-fat diet. According to the random number table method, SPF-grade male C57BL/6J mice were randomly assigned to the control, L-NAME, high-fat diet, and model groups, 10 in each group. Comprehensive observations and data collection on macroscopic signs (e.g., fur condition, mental state, stool and urine, oral and nasal condition, paw and body condition, etc.) and cardiac function were performed after 10 and 16 weeks of model induction. Additionally, the syndrome evolution was elucidated based on diagnostic criteria for clinical syndromes of heart failure. Furthermore, pathological and molecular biological examinations of myocardial tissue were performed to assess the stability and reliability of the model.
Results:
Mice in the model group showed typical characteristics of syndrome of qi deficiency and blood stasis, as well as syndrome of internal heat accumulation, including lethargy, slow response, dull paw color and oral/nasal color, exercise intolerance, abnormal platelet activation, dry feces, and dark yellow urine. The time window for these syndromes was between 10 and 16 weeks post-modeling. Cardiac function assessments revealed severe diastolic dysfunction, concentric myocardial hypertrophy, and myocardial fibrosis in the model group. Pathological examinations showed a significantly increased collagen deposition in the myocardial interstitium, enlarged cross-sectional area of cardiomyocytes, and sparse coronary microvasculature in the model group. Molecular biological analyses indicated marked activation of the inducible nitric oxide synthase/nuclear factor kappa-light-chain-enhancer of activated B cells/NOD-like receptor family pyrin domain containing 3 inflammatory pathway and significantly elevated inflammation levels in the myocardial tissue of the model group. Although mice in the L-NAME and high-fat diet groups also showed certain manifestations of qi deficiency syndrome, the substantial cardiac damage was relatively limited compared to the control group.
Conclusion
This study has constructed an animal model of HFpEF that integrates disease and syndrome based on the "deficiency-blood stasis-toxin" pathogenesis. The macroscopic and microscopic characteristics of this model are consistent with the manifestations of syndrome of qi deficiency and blood stasis, toxin syndrome, and syndrome of internal heat accumulation. Moreover, it can stably simulate the HFpEF state and reflect phenotypic changes in human disease. This model provides a suitable experimental platform to explore the pathogenesis of HFpEF, evaluate the effectiveness of traditional Chinese medicine (TCM) treatment regimens, and promote in-depth research on TCM syndromes of heart failure.
7.Mechanism on Banxia Xiexintang Inducing Ferroptosis in Gastric Cancer Cells Based on Nrf2/GPX4 Signaling Pathway
Ling LI ; Yaxing LI ; Xue WANG ; Xiao QIU ; Wei GUO ; Hailiang HUANG ; Xijian LIU ; Tao HAN
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(6):10-19
ObjectiveTo observe the effect of Banxia Xiexintang (BXT) on the proliferation of human gastric cancer HGC-27, MKN-45, and AGS cells and its mechanism. MethodCell counting kit-8 (CCK-8) was used to detect the effects of different concentrations of BXT-containing serum (5%, 10%, and 20%) on the proliferation of HGC-27, MKN-45, and AGS cells. A mitochondrial membrane potential probe (TMRE) was used to detect the expression of mitochondrial membrane potential in cells. A kit was used to detect iron ion (Fe2+) content, lipid peroxide (LPO), and superoxide dismutase (SOD) activity. Western blot was used to detect the protein expression levels of glycogen synthase3β (GSK3β), phosphorylated GSK3β (p-GSK3β), nuclear factor E2 related factor 2 (Nrf2), and glutathione peroxidase 4 (GPX4). The real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to detect the mRNA expression of member 11 of the cystine/glutamic acid reverse transporter solute vector family 7 (SLC7A11), member 2 of the heavy chain solute vector family 3 (SLC3A2), transferrin receptor 3 (TFRC), and tumor protein (TP)53. ResultCCK-8 results showed that BXT and capecitabine could significantly reduce the survival rate of three kinds of gastric cancer cells after treatment with drug-containing serum for 24 h (P<0.01). After 48 h of intervention with drug-containing serum, the survival rate of three kinds of gastric cancer cells was significantly decreased in both the capecitabine group and the BXT group compared with the blank group. The BXT group was dose-dependent, with 20% BXT having the most significant effect (P<0.01). In terms of biochemical indicators of ferroptosis, compared with the blank group, BXT and capecitabine significantly decreased the expression of mitochondrial membrane potential (P<0.01) and SOD activity (P<0.01) and significantly increased the contents of LPO and Fe2+ (P<0.01), so as to improve the sensitivity of gastric cancer cells to ferroptosis. In terms of the Nrf2/GPX4 pathway, compared with the blank group, the BXT group could reduce the protein expressions of p-GSK3β, Nrf2, and GPX4 (P<0.01) in gastric cancer cells and increase mRNA expressions of SLC7A11 and SLC3A2 (P<0.05). It could also increase the protein expression of GSK3β (P<0.01) and mRNA expression of TP53 and TFRC (P<0.05, P<0.01) in gastric cancer cells. Inhibition of the Nrf2/GPX4 pathway induces ferroptosis in gastric cancer cells. Compared with the capecitabine group, the 20% BXT group showed a more obvious effect. ConclusionBanxia Xiexintang can induce ferroptosis in gastric cancer cells HGC-27, MKN-45, and AGS by inhibiting the Nrf2/GPX4 pathway.
8.Electroacupuncture at Sensitized Acupoints Relieves Somatic Referred Pain in Colitis Rats by Inhibiting Sympathetic-Sensory Coupling to Interfere with 5-HT Signaling Pathway.
Ying YANG ; Jin-Yu QU ; Hua GUO ; Hai-Ying ZHOU ; Xia RUAN ; Ying-Chun PENG ; Xue-Fang SHEN ; Jin XIONG ; Yi-Li WANG
Chinese journal of integrative medicine 2024;30(2):152-162
OBJECTIVE:
To investigate whether electroacupuncture (EA) at sensitized acupoints could reduce sympathetic-sensory coupling (SSC) and neurogenic inflammatory response by interfering with 5-hydroxytryptamine (5-HT)ergic neural pathways to relieve colitis and somatic referred pain, and explore the underlying mechanisms.
METHODS:
Rats were treated with 5% dextran sodium sulfate (DSS) solution for 7 days to establish a colitis model. Twelve rats were randomly divided into the control and model groups according to a random number table (n=6). According to the "Research on Rat Acupoint Atlas", sensitized acupoints and non-sensitized acupoints were determined. Rats were randomly divided into the control, model, Zusanli-EA (ST 36), Dachangshu-EA (BL 25), and Xinshu (BL 15) groups (n=6), as well as the control, model, EA, and EA + GR113808 (a 5-HT inhibitor) groups (n=6). The rats in the control group received no treatment. Acupuncture was administered on 2 days after modeling using the stimulation pavameters: 1 mA, 2 Hz, for 30 min, with sparse and dense waves, for 14 consecutive days. GR113808 was injected into the tail vein at 5 mg/kg before EA for 10 min for 7 consecutive days. Mechanical sensitivity was assessed with von Frey filaments. Body weight and disease activity index (DAI) scores of rats were determined. Hematoxylin and eosin staining was performed to observe colon histopathology. SSC was analyzed by immunofluorescence staining. Immunohistochemical staining was performed to detect 5-HT and substance P (SP) expressions. The calcitonin gene-related peptide (CGRP) in skin tissue and tyrosine hydroxylase (TH) protein levels in DRG were detected by Western blot. The levels of hyaluronic acid (HA), bradykinin (BK), prostaglandin I2 (PGI2) in skin tissue, 5-HT, tryptophan hydroxylase 1 (TPH1), serotonin transporters (SERT), 5-HT 3 receptor (5-HT3R), and 5-HT 4 receptor (5-HT4R) in colon tissue were measured by enzyme-linked immunosorbent assay (ELISA).
RESULTS:
BL 25 and ST 36 acupoints were determined as sensitized acupoints, and BL 15 acupoint was used as a non-sensitized acupoint. EA at sensitized acupoints improved the DAI score, increased mechanical withdrawal thresholds, and alleviated colonic pathological damage of rats. EA at sensitized acupoints reduced SSC structures and decreased TH and CGRP expression levels (P<0.05). Furthermore, EA at sensitized acupoints reduced BK, PGI2, 5-HT, 5-HT3R and TPH1 levels, and increased HA, 5-HT4R and SERT levels in colitis rats (P<0.05). GR113808 treatment diminished the protective effect of EA at sensitized acupoints in colitis rats (P<0.05).
CONCLUSION
EA at sensitized acupoints alleviated DSS-induced somatic referred pain in colitis rats by interfering with 5-HTergic neural pathway, and reducing SSC inflammatory response.
Rats
;
Animals
;
Electroacupuncture
;
Rats, Sprague-Dawley
;
Serotonin
;
Acupuncture Points
;
Pain, Referred
;
Calcitonin Gene-Related Peptide
;
Signal Transduction
;
Colitis/therapy*
;
Indoles
;
Sulfonamides
9.Baihe Wuyaotang Ameliorates NAFLD by Enhancing mTOR-mediated Liver Autophagy
Rui WANG ; Tiantian BAN ; Lihui XUE ; Xinyi FENG ; Jiyuan GUO ; Jiaqi LI ; Shenghe JIANG ; Xiaolei HAN ; Baofeng HU ; Wenli ZHANG ; Naijun WU ; Shuang LI ; Yajuan QI
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(7):66-77
ObjectiveTo investigate the therapeutic effect of Baihe Wuyaotang (BWT) on non-alcoholic fatty liver disease (NAFLD) and elucidate its underlying mechanism. MethodC57BL/6J mice were randomly assigned to six groups: normal control, model, positive drug (pioglitazone hydrochloride 1.95×10-3 g·kg-1), and low-, medium-, and high-dose BWT (1.3,2.5 and 5.1 g·kg-1). Following a 12-week high-fat diet (HFD) inducement, the mice underwent six weeks of therapeutic intervention with twice-daily drug administration. Body weight was monitored weekly throughout the treatment period. At the fifth week, glucose tolerance (GTT) and insulin tolerance (ITT) tests were conducted. Subsequently, the mice were euthanized for the collection of liver tissue and serum, and the subcutaneous adipose tissue (iWAT) and epididymal adipose tissue (eWAT) were weighed. Serum levels of total triglycerides (TG) and liver function indicators,such as alanine aminotransferase (ALT) and aspartate aminotransferase (AST), were determined. Histological examinations, including oil red O staining, hematoxylin-eosin (HE) staining, Masson staining, and transmission electron microscopy, were performed to evaluate hepatic lipid deposition, pathological morphology, and ultrastructural changes, respectively. Meanwhile, Western blot and real-time quantitative polymerase chain reaction (Real-time PCR) were employed to analyze alterations, at both gene and protein levels, the insulin signaling pathway molecules, including insulin receptor substrate 1/2/protein kinase B/forkhead box gene O1 (IRS1/2/Akt/FoxO1), glycogen synthesis enzymes phosphoenolpyruvate carboxy kinase (Pepck) and glucose-6-phosphatase (G6Pase), lipid metabolism-related genes stearoyl-coA desaturase-1 (SCD-1) and carnitine palmitoyltransferase-1 (CPT-1), fibrosis-associated molecules α-smooth muscle actin (α-SMA), type Ⅰ collagen (CollagenⅠ), and the fibrosis canonical signaling pathway transforming growth factor-β1/drosophila mothers against decapentaplegic protein2/3(TGF-β1/p-Smad/Smad2/3), inflammatory factors such as interleukin(IL)-6, IL-8, IL-11, and IL-1β, autophagy markers LC3B Ⅱ/Ⅰ and p62/SQSTM1, and the expression of mammalian target of rapamycin (mTOR). ResultCompared with the model group, BWT reduced the body weight and liver weight of NAFLD mice(P<0.05, P<0.01), inhibited liver lipid accumulation, and reduced the weight of white fat: it reduced the weight of eWAT and iWAT(P<0.05, P<0.01) as well as the serum TG content(P<0.05, P<0.01). BWT improved the liver function as reflected by the reduced ALT and AST content(P<0.05, P<0.01). It improved liver insulin resistance by upregulating IRS2, p-Akt/Akt, p-FoxO1/FoxO1 expressions(P<0.05). Besides, it improved glucose and lipid metabolism disorders: it reduced fasting blood glucose and postprandial blood glucose(P<0.05, P<0.01), improved GTT and ITT(P<0.05, P<0.01), reduced the expression of Pepck, G6Pase, and SCD-1(P<0.01), and increased the expression of CPT-1(P<0.01). The expressions of α-SMA, Collagen1, and TGF-β1 proteins were down-regulated(P<0.05, P<0.01), while the expression of p-Smad/Smad2/3 was downregulated(P<0.05), suggesting BWT reduced liver fibrosis. BWT inhibited inflammation-related factors as it reduced the gene expression of IL-6, IL-8, IL-11 and IL-1β(P<0.01) and it enhanced autophagy by upregulating LC3B Ⅱ/Ⅰ expression(P<0.05)while downregulating the expression of p62/SQSTM1 and mTOR(P<0.05). ConclusionBWT ameliorates NAFLD by multifaceted improvements, including improving IR and glucose and lipid metabolism, anti-inflammation, anti-fibrosis, and enhancing autophagy. In particular, BWT may enhance liver autophagy by inhibiting the mTOR-mediated signaling pathway.
10. A network pharmacology-based approach to explore mechanism of kaempferol-7 -O -neohesperidoside against prostate cancer
Qiu-Ping ZHANG ; Zhi-Ping CHENG ; Wei XUE ; Qiao-Feng LI ; Hong-Wei GUO ; Qiu-Ping ZHANG ; Jie-Jun FU ; Hong-Wei GUO
Chinese Pharmacological Bulletin 2024;40(1):146-154
Aim To explore the effect of kaempferol-7- 0-neohesperidoside (K70N) against prostate cancer (PCa) and the underlying mechanism. Methods The effect of K70N on the proliferation of PCa cell lines PC3, DU145, C4-2 and LNCaP was detected using CCK8 assay. The effect of K70N on migration ability of DU145 cells was determined by wound healing assay. The targets of K70N and PCa were screened from SuperPred and other databases. The common targets both related to K70N and PCa were obtained from the Venny online platform, a protein-protein interaction network (PPI) was constructed by the String and Cyto- scape. Meanwhile, the GO and KEGG functional enrichment were analyzed by David database. Then, a "drug-target-disease-pathway" network model was constructed. Cell cycle of PCa cells treated with K70N was analyzed by flow cytometry. The expressions of cycle-associated proteins including Skp2, p27 and p21 protein were detected by Western blot. Molecular docking between Skp2 and K70N was conducted by Sybyl X2. 0. Results K70N significantly inhibited the proliferation and migration of PCa cells. A total number of 34 drug-disease intersection targets were screened. The String results showed that Skp2 and p27, among the common targets, were the key targets of K70N for PCa treatment. Furthermore, GO and KEGG functional en-richment indicated that the mechanism was mainly related to the cell cycle. Flow cytometry showed that K70N treatment induced cell cycle arrest at the S phase. Compared with the control group, the protein expression level of Skp2 was significantly down-regulated, while the protein expression levels of p27 and p21 were up-regulated. The network molecular docking indicated that the ligand K70N had a good binding ability with the receptor Skp2. Conclusions K70N could inhibit the proliferation and migration of PCa cells, block the cell cycle in the S phase, which may be related to the regulation of cell cycle through the Skp2- p27/p21 signaling pathway.


Result Analysis
Print
Save
E-mail