1.Adolescent Smoking Addiction Diagnosis Based on TI-GNN
Xu-Wen WANG ; Da-Hua YU ; Ting XUE ; Xiao-Jiao LI ; Zhen-Zhen MAI ; Fang DONG ; Yu-Xin MA ; Juan WANG ; Kai YUAN
Progress in Biochemistry and Biophysics 2025;52(9):2393-2405
		                        		
		                        			
		                        			ObjectiveTobacco-related diseases remain one of the leading preventable public health challenges worldwide and are among the primary causes of premature death. In recent years, accumulating evidence has supported the classification of nicotine addiction as a chronic brain disease, profoundly affecting both brain structure and function. Despite the urgency, effective diagnostic methods for smoking addiction remain lacking, posing significant challenges for early intervention and treatment. To address this issue and gain deeper insights into the neural mechanisms underlying nicotine dependence, this study proposes a novel graph neural network framework, termed TI-GNN. This model leverages functional magnetic resonance imaging (fMRI) data to identify complex and subtle abnormalities in brain connectivity patterns associated with smoking addiction. MethodsThe study utilizes fMRI data to construct functional connectivity matrices that represent interaction patterns among brain regions. These matrices are interpreted as graphs, where brain regions are nodes and the strength of functional connectivity between them serves as edges. The proposed TI-GNN model integrates a Transformer module to effectively capture global interactions across the entire brain network, enabling a comprehensive understanding of high-level connectivity patterns. Additionally, a spatial attention mechanism is employed to selectively focus on informative inter-regional connections while filtering out irrelevant or noisy features. This design enhances the model’s ability to learn meaningful neural representations crucial for classification tasks. A key innovation of TI-GNN lies in its built-in causal interpretation module, which aims to infer directional and potentially causal relationships among brain regions. This not only improves predictive performance but also enhances model interpretability—an essential attribute for clinical applications. The identification of causal links provides valuable insights into the neuropathological basis of addiction and contributes to the development of biologically plausible and trustworthy diagnostic tools. ResultsExperimental results demonstrate that the TI-GNN model achieves superior classification performance on the smoking addiction dataset, outperforming several state-of-the-art baseline models. Specifically, TI-GNN attains an accuracy of 0.91, an F1-score of 0.91, and a Matthews correlation coefficient (MCC) of 0.83, indicating strong robustness and reliability. Beyond performance metrics, TI-GNN identifies critical abnormal connectivity patterns in several brain regions implicated in addiction. Notably, it highlights dysregulations in the amygdala and the anterior cingulate cortex, consistent with prior clinical and neuroimaging findings. These regions are well known for their roles in emotional regulation, reward processing, and impulse control—functions that are frequently disrupted in nicotine dependence. ConclusionThe TI-GNN framework offers a powerful and interpretable tool for the objective diagnosis of smoking addiction. By integrating advanced graph learning techniques with causal inference capabilities, the model not only achieves high diagnostic accuracy but also elucidates the neurobiological underpinnings of addiction. The identification of specific abnormal brain networks and their causal interactions deepens our understanding of addiction pathophysiology and lays the groundwork for developing targeted intervention strategies and personalized treatment approaches in the future. 
		                        		
		                        		
		                        		
		                        	
2.Controllability Analysis of Structural Brain Networks in Young Smokers
Jing-Jing DING ; Fang DONG ; Hong-De WANG ; Kai YUAN ; Yong-Xin CHENG ; Juan WANG ; Yu-Xin MA ; Ting XUE ; Da-Hua YU
Progress in Biochemistry and Biophysics 2025;52(1):182-193
		                        		
		                        			
		                        			ObjectiveThe controllability changes of structural brain network were explored based on the control and brain network theory in young smokers, this may reveal that the controllability indicators can serve as a powerful factor to predict the sleep status in young smokers. MethodsFifty young smokers and 51 healthy controls from Inner Mongolia University of Science and Technology were enrolled. Diffusion tensor imaging (DTI) was used to construct structural brain network based on fractional anisotropy (FA) weight matrix. According to the control and brain network theory, the average controllability and the modal controllability were calculated. Two-sample t-test was used to compare the differences between the groups and Pearson correlation analysis to examine the correlation between significant average controllability and modal controllability with Fagerström Test of Nicotine Dependence (FTND) in young smokers. The nodes with the controllability score in the top 10% were selected as the super-controllers. Finally, we used BP neural network to predict the Pittsburgh Sleep Quality Index (PSQI) in young smokers. ResultsThe average controllability of dorsolateral superior frontal gyrus, supplementary motor area, lenticular nucleus putamen, and lenticular nucleus pallidum, and the modal controllability of orbital inferior frontal gyrus, supplementary motor area, gyrus rectus, and posterior cingulate gyrus in the young smokers’ group, were all significantly different from those of the healthy controls group (P<0.05). The average controllability of the right supplementary motor area (SMA.R) in the young smokers group was positively correlated with FTND (r=0.393 0, P=0.004 8), while modal controllability was negatively correlated with FTND (r=-0.330 1, P=0.019 2). ConclusionThe controllability of structural brain network in young smokers is abnormal. which may serve as an indicator to predict sleep condition. It may provide the imaging evidence for evaluating the cognitive function impairment in young smokers. 
		                        		
		                        		
		                        		
		                        	
3.Molecular biological research and molecular homologous modeling of Bw.03 subgroup
Li WANG ; Yongkui KONG ; Huifang JIN ; Xin LIU ; Ying XIE ; Xue LIU ; Yanli CHANG ; Yafang WANG ; Shumiao YANG ; Di ZHU ; Qiankun YANG
Chinese Journal of Blood Transfusion 2025;38(1):112-115
		                        		
		                        			
		                        			[Objective] To study the molecular biological mechanism for a case of ABO blood group B subtype, and perform three-dimensional modeling of the mutant enzyme. [Methods] The ABO phenotype was identified by the tube method and microcolumn gel method; the ABO gene of the proband was detected by sequence-specific primer polymerase chain reaction (PCR-SSP), and the exon 6 and 7 of the ABO gene were sequenced and analyzed. Homologous modeling of Bw.03 glycosyltransferase (GT) was carried out by Modeller and analyzed by PyMOL2.5.0 software. [Results] The weakening B antigen was detected in the proband sample by forward typing, and anti-B antibody was detected by reverse typing. PCR-SSP detection showed B, O gene, and the sequencing results showed c.721 C>T mutation in exon 7 of the B gene, resulting in p. Arg 241 Trp. Compared with the wild type, the structure of Bw.03GT was partially changed, and the intermolecular force analysis showed that the original three hydrogen bonds at 241 position disappeared. [Conclusion] Blood group molecular biology examination is helpful for the accurate identification of ambiguous blood group. Homologous modeling more intuitively shows the key site for the weakening of Bw.03 GT activity. The intermolecular force analysis can explain the root cause of enzyme activity weakening.
		                        		
		                        		
		                        		
		                        	
4.Study on the modeling method of general model of Yaobitong capsule intermediates quality analysis based on near infrared spectroscopy
Le-ting SI ; Xin ZHANG ; Yong-chao ZHANG ; Jiang-yan ZHANG ; Jun WANG ; Yong CHEN ; Xue-song LIU ; Yong-jiang WU
Acta Pharmaceutica Sinica 2025;60(2):471-478
		                        		
		                        			
		                        			 The general models for intermediates quality analysis in the production process of Yaobitong capsule were established by near infrared spectroscopy (NIRS) combined with chemometrics, realizing the rapid determination of notoginsenoside R1, ginsenoside Rg1, ginsenoside Re, ginsenoside Rb1, ginsenoside Rd and moisture. The spray-dried fine powder and total mixed granule were selected as research objects. The contents of five saponins were determined by high performance liquid chromatography and the moisture content was determined by drying method. The measured contents were used as reference values. Meanwhile, NIR spectra were collected. After removing abnormal samples by Monte Carlo cross validation (MCCV), Monte Carlo uninformative variables elimination (MC-UVE) and competitive adaptive reweighted sampling (CARS) were used to select feature variables respectively. Based on the feature variables, quantitative models were established by partial least squares regression (PLSR), extreme learning machine (ELM) and ant lion optimization least squares support vector machine (ALO-LSSVM). The results showed that CARS-ALO-LSSVM model had the optimum effect. The correlation coefficients of the six index components were greater than 0.93, and the relative standard errors were controlled within 6%. ALO-LSSVM was more suitable for a large number of samples with rich information, and the prediction effect and stability of the model were significantly improved. The general models with good predicting effect can be used for the rapid quality determination of Yaobitong capsule intermediates. 
		                        		
		                        		
		                        		
		                        	
5.Research progress of antifungal drugs from natural sources
Shao-jie CHU ; Yan ZHENG ; Shuang-shuang SU ; Xue-song WU ; Hong YAN ; Shao-xin CHEN ; Hong-bo WANG
Acta Pharmaceutica Sinica 2025;60(1):48-57
		                        		
		                        			
		                        			 As the number of patients with compromised immune function increases and fungal resistance develops, so does the risk of contracting deadly fungi in humans. Both fungi and humans are eukaryotes, so identifying unique targets for antifungal drug development is difficult. In addition, the existing antifungal drugs are limited by toxicity, drug interaction and drug resistance in practical application, which leads to the increasing incidence and fatal rate of fungal infections. Therefore, it is urgent to develop new antifungal drugs. The semi-synthetic technology using microbial fermentation products from natural sources as lead compounds has become the most used method in structural modification of antifungal drugs due to its advantages of few reaction steps and easy operation. This paper will introduce the current status of natural antifungal drugs in clinical use, as well as the latest progress in the research and development of new semi-synthetic antifungal drugs, and summarize their mechanism of action, structural modifications, advantages and disadvantages, so as to provide reference for the subsequent development of new antifungal drugs. 
		                        		
		                        		
		                        		
		                        	
6.Alanine transferase test results and exploration of threshold adjustment strategies for blood donors in Shenzhen, China
Xin ZHENG ; Yuanye XUE ; Haobiao WANG ; Litiao WU ; Ran LI ; Yingnan DANG ; Tingting CHEN ; Xiaoxuan XU ; Xuezhen ZENG ; Jinfeng ZENG
Chinese Journal of Blood Transfusion 2025;38(4):488-494
		                        		
		                        			
		                        			[Objective] To conduct a retrospective statistical comparison of alanine aminotransferase (ALT) test values in blood donors prior to blood collection, aiming to analyze the objective characteristics of the population with elevated ALT levels (ALT>50 U/L) and provide reference data for adjusting the screening eligibility threshold for ALT. [Methods] The preliminary ALT screening data of 30 341 blood donor samples collected prior to blood donation from three smart blood donation sites at the Shenzhen Blood Center between 2022 and 2023 were extracted and compared with data from a health examination department of a tertiary hospital in Shenzhen (representing the general population, n=24 906). Both datasets were categorized and statistically described. A retrospective analysis was conducted to examine the associations between ALT test results and factors such as donors' gender, age, ethnicity, donation site, donation season, and frequency of blood donation. [Results] The ALT levels in both blood donors and the general population were non-normally distributed. The 95th percentile of ALT values was calculated as 61.4 U/L (male: 67.8 U/L, female: 39.3 U/L) for blood donors and 58.1 U/L (male: 63.7 U/L, female: 51.2 U/L) for the general population. The non-compliance rates (ALT>50 U/L) were 7.65% (2 321/30 341) in blood donors and 7.08% (1 763/24 906) in the general population. There were significant differences (P<0.05) in the ALT failure rate among blood donors based on gender, age, and donation site, but no significant differences (P>0.05) during the blood donation season. There was no statistically significant difference (P>0.05) in the positive rates of four serological markers (HBsAg, anti HCV, HIV Ag/Ab, anti TP) for blood screening pathogens between ALT unqualified and qualified individuals (2.05% vs 1.5%). If the ALT qualification threshold was raised from 50 U/L to 90 U/L, the non qualification rates of male and female blood donors would decrease from 9.82% (2 074/21 125) to 2.23% (471/21 125) and from 2.70% (249/9 216) to 0.75% (69/9 216), respectively. Among the 154 blood donors who donated blood more than 3 times, 88.31% of the 248 ALT test results were in the range of 50-90 U/L. Among them, 9 cases had ALT>130 U/L, and ALT was converted to qualified in subsequent blood donations. [Conclusion] There are differences in the ALT failure rate among blood donors of different genders and ages, and different blood donation sites and operators can also affect the ALT detection values of blood donors. The vast majority of blood donors with ALT failure are caused by transient and non pathological factors. With the widespread use of blood virus nucleic acid testing, appropriately increasing the ALT qualification threshold for blood donors can expand the qualified population and alleviate the shortage of blood sources, and the risk of blood safety will not increase.
		                        		
		                        		
		                        		
		                        	
7.PDGF-C: an Emerging Target in The Treatment of Organ Fibrosis
Chao YANG ; Zi-Yi SONG ; Chang-Xin WANG ; Yuan-Yuan KUANG ; Yi-Jing CHENG ; Ke-Xin REN ; Xue LI ; Yan LIN
Progress in Biochemistry and Biophysics 2025;52(5):1059-1069
		                        		
		                        			
		                        			Fibrosis, the pathological scarring of vital organs, is a severe and often irreversible condition that leads to progressive organ dysfunction. It is particularly pronounced in organs like the liver, kidneys, lungs, and heart. Despite its clinical significance, the full understanding of its etiology and complex pathogenesis remains incomplete, posing substantial challenges to diagnosing, treating, and preventing the progression of fibrosis. Among the various molecular players involved, platelet-derived growth factor-C (PDGF-C) has emerged as a crucial factor in fibrotic diseases, contributing to the pathological transformation of tissues in several key organs. PDGF-C is a member of the PDGFs family of growth factors and is synthesized and secreted by various cell types, including fibroblasts, smooth muscle cells, and endothelial cells. It acts through both autocrine and paracrine mechanisms, exerting its biological effects by binding to and activating the PDGF receptors (PDGFRs), specifically PDGFRα and PDGFRβ. This binding triggers multiple intracellular signaling pathways, such as JAK/STAT, PI3K/AKT and Ras-MAPK pathways. which are integral to the regulation of cell proliferation, survival, migration, and fibrosis. Notably, PDGF-C has been shown to promote the proliferation and migration of fibroblasts, key effector cells in the fibrotic process, thus accelerating the accumulation of extracellular matrix components and the formation of fibrotic tissue. Numerous studies have documented an upregulation of PDGF-C expression in various fibrotic diseases, suggesting its significant role in the initiation and progression of fibrosis. For instance, in liver fibrosis, PDGF-C stimulates hepatic stellate cell activation, contributing to the excessive deposition of collagen and other extracellular matrix proteins. Similarly, in pulmonary fibrosis, PDGF-C enhances the migration of fibroblasts into the damaged areas of lungs, thereby worsening the pathological process. Such findings highlight the pivotal role of PDGF-C in fibrotic diseases and underscore its potential as a therapeutic target for these conditions. Given its central role in the pathogenesis of fibrosis, PDGF-C has become an attractive target for therapeutic intervention. Several studies have focused on developing inhibitors that block the PDGF-C/PDGFR signaling pathway. These inhibitors aim to reduce fibroblast activation, prevent the excessive accumulation of extracellular matrix components, and halt the progression of fibrosis. Preclinical studies have demonstrated the efficacy of such inhibitors in animal models of liver, kidney, and lung fibrosis, with promising results in reducing fibrotic lesions and improving organ function. Furthermore, several clinical inhibitors, such as Olaratumab and Seralutinib, are ongoing to assess the safety and efficacy of these inhibitors in human patients, offering hope for novel therapeutic options in the treatment of fibrotic diseases. In conclusion, PDGF-C plays a critical role in the development and progression of fibrosis in vital organs. Its ability to regulate fibroblast activity and influence key signaling pathways makes it a promising target for therapeutic strategies aiming at combating fibrosis. Ongoing research into the regulation of PDGF-C expression and the development of PDGF-C/PDGFR inhibitors holds the potential to offer new insights and approaches for the diagnosis, treatment, and prevention of fibrotic diseases. Ultimately, these efforts may lead to the development of more effective and targeted therapies that can mitigate the impact of fibrosis and improve patient outcomes. 
		                        		
		                        		
		                        		
		                        	
8.Association of growth hormone secretagogue receptor rs2922126 gene polymorphism with susceptibility to non-alcoholic fatty liver disease
Xue HAN ; Hongcheng WANG ; Shousheng LIU ; Yongning XIN ; Zhenzhen ZHAO
Journal of Clinical Hepatology 2025;41(9):1802-1807
		                        		
		                        			
		                        			ObjectiveTo investigate growth hormone secretagogue receptor (GHSR) rs2922126 gene polymorphisms and their association with genetic susceptibility to nonalcoholic fatty liver disease (NAFLD) in the Chinese Han population in Qingdao, China, and to provide a basis for diagnosis and treatment. MethodsA total of 220 patients who were admitted to Qingdao Municipal Hospital from June 2022 to June 2023 and were diagnosed with NAFLD based on radiological examination were enrolled as NAFLD group, and 167 healthy individuals during the same period of time were enrolled as control group. Fasting blood samples were collected from all subjects, and related biochemical parameters were measured. Whole blood DNA was extracted, and polymerase chain reaction and MALDI-TOF mass spectrometer were used for genotyping. The chi-square test was used for comparison of categorical data between groups, and the independent-samples t test or the Mann-Whitney U test was used for comparison of continuous data between groups. The binary logistic regression analysis was used to investigate the risk of NAFLD. ResultsCompared with the control group, the NAFLD group had significantly higher age, body mass index (BMI), fasting plasma glucose, triglyceride, gamma-glutamyl transpeptidase, alkaline phosphatase, alanine aminotransferase, and aspartate aminotransferase, as well as a significantly lower level of high-density lipoprotein (all P0.05). The distribution of GHSR rs2922126 genotypes was consistent with the Hardy-Weinberg equilibrium, suggesting population representativeness in the subjects enrolled (NAFLD group: P=0.106; control group: P=0.849). There was no significant difference in the distribution of AA, TA, and TT genotypes at GHSR rs2922126 locus between the control group and the NAFLD group (P=0.099), and there was also no significant difference in allele frequency between the two groups (P=0.063). In the recessive model of A allele, there was a significant difference in the distribution of AA homozygote and TA+TT genotype between the NAFLD group and the control group (P=0.032). The binary logistic regression analysis showed that in the recessive model of A allele, AA homozygote carriers had an increased risk of NAFLD compared with TA+TT genotype carriers (odds ratio [OR]=1.712, 95% confidence interval [CI]: 1.045 — 2.807, P=0.033). There was still a significant difference after adjustment for sex, age, and BMI (OR=2.156, 95%CI: 1.221 — 3.808, P=0.008). In the NAFLD group, AA genotype carriers had a significantly higher serum level of total cholesterol (TC) than TT+TA carriers (Z=-1.99,P=0.046). ConclusionGHSR rs2922126 AA genotype may be associated with the increased risk of NAFLD in the Chinese Han population in Qingdao, and GHSR rs2922126 AA genotype is associated with the increase in TC in NAFLD patients. 
		                        		
		                        		
		                        		
		                        	
9.Hydroxysafflor Yellow A Promotes HaCaT Cell Proliferation and Migration by Regulating HBEGF/EGFR and PI3K/AKT Pathways and Circ_0084443.
Yue ZHANG ; Yan-Wei XIAO ; Jing-Xin MA ; Ao-Xue WANG
Chinese journal of integrative medicine 2024;30(3):213-221
		                        		
		                        			OBJECTIVE:
		                        			To investigate the effect and possible mechanism of hydroxysafflor yellow A (HSYA) on human immortalized keratinocyte cell proliferation and migration.
		                        		
		                        			METHODS:
		                        			HaCaT cells were treated with HSYA. Cell proliferation was detected by the cell counting kit-8 assay, and cell migration was measured using wound healing assay and Transwell migration assay. The mRNA and protein expression levels of heparin-binding epidermal growth factor (EGF)-like growth factor (HBEGF), EGF receptor (EGFR), phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT), mammalian target of rapamycin (mTOR), and hypoxia-inducible factor-1α (HIF-1α) were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot, respectively. Circ_0084443-overexpressing HaCaT cells and empty plasmid HaCaT cells were constructed using the lentiviral stable transfection and treated with HSYA. The expression of circ_0084443 was detected by qRT-PCR.
		                        		
		                        			RESULTS:
		                        			HSYA (800 µmol/L) significantly promoted HaCaT cell proliferation and migration (P<0.05 or P<0.01). It also increased the mRNA and protein expression levels of HBEGF, EGFR, PI3K, AKT, mTOR and HIF-1α, and increased the phosphorylation levels of PI3K and AKT (P<0.05 or P<0.01). Furthermore, HSYA promoted HaCaT cell proliferation and migration via the HBEGF/EGFR and PI3K/AKT/mTOR signaling pathways (P<0.01). Circ_0084443 attenuated the mRNA expression levels of HBEGF, EGFR, PI3K, AKT, mTOR and HIF-1α (P<0.05). HSYA inhibited the circ_0084443 expression, further antagonized the inhibition of circ_0084443 on HBEGF, EGFR, PI3K, AKT, mTOR and HIF-1α, and promoted the proliferation of circ_0084443-overexpressing HaCaT cells (P<0.05 or P<0.01). However, HSYA could not influence the inhibitory effect of circ_0084443 on HaCaT cell migration (P>0.05).
		                        		
		                        			CONCLUSION
		                        			HSYA played an accelerative role in HaCaT cell proliferation and migration, which may be attributable to activating HBEGF/EGFR and PI3K/AKT signaling pathways, and had a particular inhibitory effect on the keratinocyte negative regulator circ_0084443.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Proto-Oncogene Proteins c-akt/metabolism*
		                        			;
		                        		
		                        			Phosphatidylinositol 3-Kinase
		                        			;
		                        		
		                        			Phosphatidylinositol 3-Kinases/metabolism*
		                        			;
		                        		
		                        			ErbB Receptors/genetics*
		                        			;
		                        		
		                        			TOR Serine-Threonine Kinases/metabolism*
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			RNA, Messenger/genetics*
		                        			;
		                        		
		                        			Cell Movement
		                        			;
		                        		
		                        			Cell Line, Tumor
		                        			;
		                        		
		                        			Chalcone/analogs & derivatives*
		                        			;
		                        		
		                        			Quinones
		                        			
		                        		
		                        	
10.Exploration of Spectrum-effect Relationship of Zhuriheng Dropping Pills Against Macrophage Foaming Based on UPLC-Q-Exactive Orbitrap MS
Qiong ZHAI ; Fangyuan LIANG ; Yuewu WANG ; Ren BU ; Xin DONG ; Jingkun LU ; Peifeng XUE
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(10):176-186
		                        		
		                        			
		                        			ObjectiveThrough the correlation analysis between intestinal absorption profile and inhibition of macrophage foaming, the pharmacodynamic components of Zhuriheng dripping pills(ZRH) were explored to provide a basis for establishing its quality standard. MethodIntestinal absorption fluids with 0, 5, 10, 15, 20 times clinical equivalent doses were prepared by a rat everted gut sac(EGS), and the oxidized low density lipoprotein(ox-LDL)-induced RAW264.7 macrophage foaming model was used to investigate the effect of intestinal absorption fluid with different doses on the accumulation of lipids in RAW264.7 cells by oil red O staining and cholesterol content determination, and to screen for the optimal dose. Ultra performance liquid chromatography-quadrupole-electrostatic field orbitrap high-resolution mass spectrometry(UPLC-Q-Exactive Orbitrap MS) was used to analyze and identify intestinal absorption fractions of ZRH intestinal absorption fluids, and partial least squares-discriminant analysis(PLS-DA) and orthogonal partial least squares-discriminant analysis(OPLS-DA) were performed on different doses of ZRH intestinal absorption fluids using SIMCA 13.0 with peak area as the independent variable and the pharmacodynamic indicators as the dependent variables to screen the compounds with variable importance in the projection(VIP) value>1.0 as contributing components, and Pearson correlation analysis was used to determine the spectral effect relationship, determined the compounds and positive correlation with pharmacodynamic were as active ingredients. Molecular docking was used to verify the binding energy of peroxisome proliferator-activated receptor α(PPARα), PPARγ, PPARβ, human retinoid X receptor α(RXRA) and nuclear transcription factor-κB(NF-κB) with the active ingredients in ZRH intestinal absorption fluids. Real-time fluorescence quantitative polymerase chain reaction(Real-time PCR) was performed to detect the mRNA levels of PPARγ, scavenger receptor A1(SRA1) and adenosine triphosphate-binding cassette transporter A1(ABCA1) in RAW264.7 cells, Westen blot was used to detect the expression level of PPARγ protein in RAW264.7 cells, and enzyme-linked immunosorbent assay(ELISA) was used to detect the levels of interleukin(IL)-1β and NF-κB in RAW264.7 cells. ResultAccording to the results of oil red O staining and cholesterol content determination, the ZRH intestinal absorption fluids could significantly reduce macrophage foaming, and intestinal absorption fluids with 15, 20 times clinical equivalent doses had the best effect, the 15-fold ZRH intestinal absorption fluid was finally determined as the study subject. Spectral effect relationship showed that 52 corresponding peaks in the ZRH-containing intestinal fluid were positively correlated with the efficacy, including organic acids, phenylpropanoids, iridoids, flavonoids, bile acids, coumarins and chromones. Target validation results showed that 86.9%-96.2% of the total components processed good binding activities with the key targets of PPARα, PPARγ, PPARβ, RXRA and NF-κB, and the docking energy values were all less than -6.0 kcal·mol-1(1 cal≈4.19 J). The results of validation showed that, compared with the normal group, the model group showed a significant increase in the levels of SRA1 and PPARγ mRNA expression, a significant decrease in ABCA1 mRNA expression, a significant increase in the level of PPARγ protein expression, and a significant increase in the levels of IL-1β and NF-κB(P<0.01), compared with the model group, the 15-fold intestinal absorption fluid group showed a significant decrease in the levels of SRA1 and PPARγ mRNA expression(P<0.05, P<0.01), ABCA1 mRNA expression level was significantly up-regulated, the levels of IL-1β and NF-κB were significantly reduced(P<0.01), and PPARγ protein expression level was significantly reduced(P<0.05). ConclusionThis study identifies 52 components and their metabolites in ZRH intestinal absorption fluid that are positively correlated with the inhibition of macrophage foaming, which may be related to the regulation of the PPARs pathway in cells and the reduction of the levels of inflammatory factors, and can provide a reference for the quality control and clinical application of ZRH. 
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail