1.Biomimetic nanoparticle delivery systems b ased on red blood cell membranes for disease treatment
Chen-xia GAO ; Yan-yu XIAO ; Yu-xue-yuan CHEN ; Xiao-liang REN ; Mei-ling CHEN
Acta Pharmaceutica Sinica 2025;60(2):348-358
Nanoparticle delivery systems have good application prospects in the field of precision therapy, but the preparation process of nanomaterial has problems such as short
2.A novel TNKS/USP25 inhibitor blocks the Wnt pathway to overcome multi-drug resistance in TNKS-overexpressing colorectal cancer.
Hongrui ZHU ; Yamin GAO ; Liyun LIU ; Mengyu TAO ; Xiao LIN ; Yijia CHENG ; Yaoyao SHEN ; Haitao XUE ; Li GUAN ; Huimin ZHAO ; Li LIU ; Shuping WANG ; Fan YANG ; Yongjun ZHOU ; Hongze LIAO ; Fan SUN ; Houwen LIN
Acta Pharmaceutica Sinica B 2024;14(1):207-222
Modulating Tankyrases (TNKS), interactions with USP25 to promote TNKS degradation, rather than inhibiting their enzymatic activities, is emerging as an alternative/specific approach to inhibit the Wnt/β-catenin pathway. Here, we identified UAT-B, a novel neoantimycin analog isolated from Streptomyces conglobatus, as a small-molecule inhibitor of TNKS-USP25 protein-protein interaction (PPI) to overcome multi-drug resistance in colorectal cancer (CRC). The disruption of TNKS-USP25 complex formation by UAT-B led to a significant decrease in TNKS levels, triggering cell apoptosis through modulation of the Wnt/β-catenin pathway. Importantly, UAT-B successfully inhibited the CRC cells growth that harbored high TNKS levels, as demonstrated in various in vitro and in vivo studies utilizing cell line-based and patient-derived xenografts, as well as APCmin/+ spontaneous CRC models. Collectively, these findings suggest that targeting the TNKS-USP25 PPI using a small-molecule inhibitor represents a compelling therapeutic strategy for CRC treatment, and UAT-B emerges as a promising candidate for further preclinical and clinical investigations.
3.Influential mechanism of graphene and its derivatives on angiogenesis and vascularized bone
Li GAO ; Liu LIU ; Wenyan REN ; Xue LIU ; Yiyu WANG
Chinese Journal of Tissue Engineering Research 2024;28(17):2716-2722
BACKGROUND:Graphene is the thinnest,strongest,and toughest type of two-dimensional new crystal material,demonstrating significant advantages in biomedical applications.Angiogenesis and vascularization of bone are key factors in tissue repair and regeneration,and are effective ways to address vascular and osteogenic issues. OBJECTIVE:To review the characteristics and mechanisms of graphene and its derivatives in promoting angiogenesis activity and vascularizing bone,in order to provide a reference for their clinical application in vascular tissue repair and regeneration. METHODS:Using a computer to search for relevant literature included in PubMed,ScienceDirect,CNKI,and Wanfang databases,the Chinese search terms were"grapheme","angiogenesis,vascularization","vascularized bone",and"endothelial cells",while the English search terms were"graphene""angiogenesis OR vascularization""vascularized bone""endothelial cells".After excluding literature unrelated to the topic of the article,according to the inclusion and exclusion criteria,62 articles were ultimately included for result analysis. RESULTS AND CONCLUSION:(1)At present,graphene oxide has been studied more and is the most widely used in graphene and its derivatives.(2)Graphene and its derivatives are suitable for heart,bone,nerve,and wound healing related diseases.(3)Graphene and its derivatives have excellent physical and chemical properties and biological properties,but they have potential cytotoxicity.We should pay attention to its biological safety in application.(4)The application of graphene and its derivatives requires further research to demonstrate the optimal size and concentration and measures to reduce toxicity.(5)On the cellular level,graphene and its derivatives can promote angiogenic activity by tip endothelial cell phenotype,mesenchymal stem cell adhesion and proliferation, and vascular smooth muscle cell growth.(6)On the molecular level,graphene and its derivatives can increase the expression of vascular endothelial growth factor,basic fibroblast growth factor,hepatocyte growth factor and activate reactive oxygen species/nitric oxide synthase/nitric oxide signaling pathway,lysophosphatilate R6/Hippo-YAP pathway,stromal cell-derived factor-1/vascular endothelial growth factor and ZEB 1/Notch1 pathway.(7)Grapheme oxide and graphene oxide-copper phosphorylated extracellular regulatory protein kinase and activated hypoxia-inducible factor-1,thereby promoting the up-regulation of vascular endothelial growth factor and bone morphogenetic protein-2 expression,and promoting angiogenesis and vascularized bone.(8)In summary,graphene and its derivatives,especially graphene oxide,have great application prospects in the repair and regeneration of vascularized tissues due to their excellent biological properties,good angiogenesis and vascularized bone ability.
4.TCM Guidelines for Diagnosis and Treatment of Chronic Cough in Children
Xi MING ; Liqun WU ; Ziwei WANG ; Bo WANG ; Jialin ZHENG ; Jingwei HUO ; Mei HAN ; Xiaochun FENG ; Baoqing ZHANG ; Xia ZHAO ; Mengqing WANG ; Zheng XUE ; Ke CHANG ; Youpeng WANG ; Yanhong QIN ; Bin YUAN ; Hua CHEN ; Lining WANG ; Xianqing REN ; Hua XU ; Liping SUN ; Zhenqi WU ; Yun ZHAO ; Xinmin LI ; Min LI ; Jian CHEN ; Junhong WANG ; Yonghong JIANG ; Yongbin YAN ; Hengmiao GAO ; Hongmin FU ; Yongkun HUANG ; Jinghui YANG ; Zhu CHEN ; Lei XIONG
Journal of Nanjing University of Traditional Chinese Medicine 2024;40(7):722-732
Following the principles of evidence-based medicine,in accordance with the structure and drafting rules of standardized documents,based on literature research,according to the characteristics of chronic cough in children and issues that need to form a consensus,the TCM Guidelines for Diagnosis and Treatment of Chronic Cough in Children was formulated based on the Delphi method,expert discussion meetings,and public solicitation of opinions.The guideline includes scope of application,terms and definitions,eti-ology and diagnosis,auxiliary examination,treatment,prevention and care.The aim is to clarify the optimal treatment plan of Chinese medicine in the diagnosis and treatment of this disease,and to provide guidance for improving the clinical diagnosis and treatment of chronic cough in children with Chinese medicine.
5.Application of large language models in health education for patients with diabetic retinopathy
Fei GAO ; Xue GAO ; Yan SHAO ; Xinjun REN ; Boshi LIU ; Mingfei JIAO ; Xiaorong LI ; Juping LIU
Chinese Journal of Experimental Ophthalmology 2024;42(12):1111-1118
Objective:To evaluate the accuracy, completeness, and reproducibility of domestic open-source large language models (LLM) in diabetic retinopathy (DR) patient education, and to explore their potential as intelligent virtual assistants for DR patient education.Methods:A total of 41 questions and answers related to the diagnosis and treatment of DR in five categories, namely risk factors, screening and examination, symptoms and staging, diagnosis, treatment and prognosis.All questions were repeated twice as a " new dialogue" in the LLM, and all the answers were recorded.Three senior fundus physicians independently evaluated the answers on a 6-point Likert scale for accuracy and a 3-point Likert scale for completeness and repeatability, and for each answer, the evaluator was asked to make a recommendation between the LLM and the manual answers.Five questions were randomly selected to evaluate the three open source LLM, ERNIE Bot 3.5, Qwen and Kimi chat, and the LLM with the best overall performance was selected for further evaluation in the full question bank.Results:Among the three LLM, Kimi chat had the best overall performance, Kimi chat performed best, with percentages of 6 for accuracy, 3 for completeness, and 3 for repeatability among the 5 questions at 90%, 90%, and 100%, respectively.For all questions answered, the number of words in manual replies was 106 (70, 202), which was significantly lower than 505 (386, 600) in Kimi chat ( Z=-7.866, P<0.001).There was no significant correlation between the number of Kimi chat replies and the accuracy score ( rs=-0.044, P=0.492), but it was positively correlated with the integrity score ( rs=0.239, P<0.001).The interclass correlation coefficient for accuracy and completeness scores were above 0.700 among three evaluators, with the highest agreement for repeatability at 0.853, followed by completeness of the first response at 0.771.The proportion of responses ≥5 points for accuracy was 87.0%(214/246), the proportion ≥2 points for completeness was 98.0%(241/246), and the proportion higher than 70% for repeatability was 78.5%(193/246).Kimi chat excelled in answering basic questions about the disease such as disease definition, staging, frequency of screening, and common risk factors, but performed poorly on questions involving treatment choices that require a doctor's professional judgment.The proportion of evaluators choosing Kimi chat responses as superior was 69.5% (171/246), and the reasons for non-selection included lack of characteristic answers, inclusion of too much irrelevant information, and lack of responses to questions requiring a high degree of medical expertise. Conclusions:Kimi chat answers DR-related diagnostic questions in a detailed and well-organized manner, with a high degree of accuracy, completeness and reproducibility.
6.Surveillance of bacterial resistance in tertiary hospitals across China:results of CHINET Antimicrobial Resistance Surveillance Program in 2022
Yan GUO ; Fupin HU ; Demei ZHU ; Fu WANG ; Xiaofei JIANG ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Yuling XIAO ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Jingyong SUN ; Qing CHEN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yunmin XU ; Sufang GUO ; Yanyan WANG ; Lianhua WEI ; Keke LI ; Hong ZHANG ; Fen PAN ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Wei LI ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Qian SUN ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanqing ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Wenhui HUANG ; Juan LI ; Quangui SHI ; Juan YANG ; Abulimiti REZIWAGULI ; Lili HUANG ; Xuejun SHAO ; Xiaoyan REN ; Dong LI ; Qun ZHANG ; Xue CHEN ; Rihai LI ; Jieli XU ; Kaijie GAO ; Lu XU ; Lin LIN ; Zhuo ZHANG ; Jianlong LIU ; Min FU ; Yinghui GUO ; Wenchao ZHANG ; Zengguo WANG ; Kai JIA ; Yun XIA ; Shan SUN ; Huimin YANG ; Yan MIAO ; Mingming ZHOU ; Shihai ZHANG ; Hongjuan LIU ; Nan CHEN ; Chan LI ; Jilu SHEN ; Wanqi MEN ; Peng WANG ; Xiaowei ZHANG ; Yanyan LIU ; Yong AN
Chinese Journal of Infection and Chemotherapy 2024;24(3):277-286
Objective To monitor the susceptibility of clinical isolates to antimicrobial agents in tertiary hospitals in major regions of China in 2022.Methods Clinical isolates from 58 hospitals in China were tested for antimicrobial susceptibility using a unified protocol based on disc diffusion method or automated testing systems.Results were interpreted using the 2022 Clinical &Laboratory Standards Institute(CLSI)breakpoints.Results A total of 318 013 clinical isolates were collected from January 1,2022 to December 31,2022,of which 29.5%were gram-positive and 70.5%were gram-negative.The prevalence of methicillin-resistant strains in Staphylococcus aureus,Staphylococcus epidermidis and other coagulase-negative Staphylococcus species(excluding Staphylococcus pseudintermedius and Staphylococcus schleiferi)was 28.3%,76.7%and 77.9%,respectively.Overall,94.0%of MRSA strains were susceptible to trimethoprim-sulfamethoxazole and 90.8%of MRSE strains were susceptible to rifampicin.No vancomycin-resistant strains were found.Enterococcus faecalis showed significantly lower resistance rates to most antimicrobial agents tested than Enterococcus faecium.A few vancomycin-resistant strains were identified in both E.faecalis and E.faecium.The prevalence of penicillin-susceptible Streptococcus pneumoniae was 94.2%in the isolates from children and 95.7%in the isolates from adults.The resistance rate to carbapenems was lower than 13.1%in most Enterobacterales species except for Klebsiella,21.7%-23.1%of which were resistant to carbapenems.Most Enterobacterales isolates were highly susceptible to tigecycline,colistin and polymyxin B,with resistance rates ranging from 0.1%to 13.3%.The prevalence of meropenem-resistant strains decreased from 23.5%in 2019 to 18.0%in 2022 in Pseudomonas aeruginosa,and decreased from 79.0%in 2019 to 72.5%in 2022 in Acinetobacter baumannii.Conclusions The resistance of clinical isolates to the commonly used antimicrobial agents is still increasing in tertiary hospitals.However,the prevalence of important carbapenem-resistant organisms such as carbapenem-resistant K.pneumoniae,P.aeruginosa,and A.baumannii showed a downward trend in recent years.This finding suggests that the strategy of combining antimicrobial resistance surveillance with multidisciplinary concerted action works well in curbing the spread of resistant bacteria.
7.Radix Angelica Sinensis and Radix Astragalus ultrafiltration extract improves radiation-induced pulmonary fibrosis in rats by regulating NLRP3/caspase-1/GSDMD pyroptosis pathway
Chun-Zhen REN ; Jian-Fang YUAN ; Chun-Ling WANG ; Xiao-Dong ZHI ; Qi-Li ZHANG ; Qi-Lin CHEN ; Xin-Fang LYU ; Xiang GAO ; Xue WU ; Xin-Ke ZHAO ; Ying-Dong LI
Chinese Pharmacological Bulletin 2024;40(11):2124-2131
Aim To investigate the mechanism of py-roptosis mediated by the NLRP3/caspase-1/GSDMD signaling pathway and the intervention effect of Radix Angelica Sinensis and Radix Astragalus ultrafiltration extract(RAS-RA)in radiation-induced pulmonary fi-brosis.Methods Fifty Wistar rats were randomly di-vided into five groups,with ten rats in each group.Ex-cept for the blank control group,all other groups of rats were anesthetized and received a single dose of 40 Gy X-ray local chest radiation to establish a radiation-in-duced pulmonary fibrosis rat model.After radiation,the rats in the RAS-RA intervention groups were orally administered doses of 0.12,0.24 and 0.48 g·kg-1 once a day for 30 days.The average weight and lung index of the rats were observed after 30 days of contin-uous administration.Hydroxyproline(HYP)content in lung tissue was determined by hydrolysis method.The levels of IL-18 and IL-1 β in serum were detected by ELISA.Lung tissue pathological changes were ob-served by HE and Masson staining.Ultrastructural changes in lung tissue were observed by transmission e-lectron microscopy.The expression levels of NLRP3/caspase-1/GSDMD pyroptosis pathway-related proteins and fibrosis-related proteins in lung tissue were detec-ted by Western blot.Results Compared with the blank group,the HYP content in lung tissue and the levels of IL-18 and IL-1 β in serum significantly in-creased in the model group(P<0.01).HE and Mas-son staining showed inflammatory cell infiltration and collagen fiber deposition.Transmission electron mi-croscopy revealed increased damaged mitochondria,disordered arrangement,irregular morphology,shallow matrix,outer membrane rupture,mostly fractured and shortened cristae,mild expansion,increased electron density of individual mitochondrial matrix,mild sparse structure of lamellar bodies,partial disorder,unclear organelles,and characteristic changes of pyroptosis.Western blot analysis showed increased expression of caspase-1,GSDMD,NLRP3,CoL-Ⅰ,α-SMA,and CoL-Ⅲ proteins(P<0.01).Compared with the model group,the RAS-RA intervention group showed signifi-cant improvement in body mass index and lung index of rats,decreased levels of IL-18 and IL-1 β inflammatory factors(P<0.01),improved mitochondrial structure,reduced degree of fibrosis,and decreased expression of caspase-1,GSDMD,NLRP3,COL-Ⅰ,COL-Ⅲ,and α-SMA proteins in lung tissue(P<0.01).Conclusion RAS-RA has an inhibitory effect on radiation-in-duced pulmonary fibrosis,and its mechanism may be related to the inhibition of pyroptosis through the regu-lation of the NLRP3/caspase-1/GSDMD signaling pathway.
9.Mechanism of Learning and Memory Impairment in Rats Exposed to Arsenic and/or Fluoride Based on Microbiome and Metabolome.
Xiao Li ZHANG ; Sheng Nan YU ; Ruo Di QU ; Qiu Yi ZHAO ; Wei Zhe PAN ; Xu Shen CHEN ; Qian ZHANG ; Yan LIU ; Jia LI ; Yi GAO ; Yi LYU ; Xiao Yan YAN ; Ben LI ; Xue Feng REN ; Yu Lan QIU
Biomedical and Environmental Sciences 2023;36(3):253-268
OBJECTIVE:
Arsenic (As) and fluoride (F) are two of the most common elements contaminating groundwater resources. A growing number of studies have found that As and F can cause neurotoxicity in infants and children, leading to cognitive, learning, and memory impairments. However, early biomarkers of learning and memory impairment induced by As and/or F remain unclear. In the present study, the mechanisms by which As and/or F cause learning memory impairment are explored at the multi-omics level (microbiome and metabolome).
METHODS:
We stablished an SD rats model exposed to arsenic and/or fluoride from intrauterine to adult period.
RESULTS:
Arsenic and/fluoride exposed groups showed reduced neurobehavioral performance and lesions in the hippocampal CA1 region. 16S rRNA gene sequencing revealed that As and/or F exposure significantly altered the composition and diversity of the gut microbiome,featuring the Lachnospiraceae_NK4A136_group, Ruminococcus_1, Prevotellaceae_NK3B31_group, [Eubacterium]_xylanophilum_group. Metabolome analysis showed that As and/or F-induced learning and memory impairment may be related to tryptophan, lipoic acid, glutamate, gamma-aminobutyric acidergic (GABAergic) synapse, and arachidonic acid (AA) metabolism. The gut microbiota, metabolites, and learning memory indicators were significantly correlated.
CONCLUSION
Learning memory impairment triggered by As and/or F exposure may be mediated by different gut microbes and their associated metabolites.
Rats
;
Animals
;
Arsenic/toxicity*
;
Fluorides
;
RNA, Ribosomal, 16S/genetics*
;
Rats, Sprague-Dawley
;
Metabolome
;
Microbiota

Result Analysis
Print
Save
E-mail