1.In situ Analytical Techniques for Membrane Protein Interactions
Zi-Yuan KANG ; Tong YU ; Chao LI ; Xue-Hua ZHANG ; Jun-Hui GUO ; Qi-Chang LI ; Jing-Xing GUO ; Hao XIE
Progress in Biochemistry and Biophysics 2025;52(5):1206-1218
Membrane proteins are integral components of cellular membranes, accounting for approximately 30% of the mammalian proteome and serving as targets for 60% of FDA-approved drugs. They are critical to both physiological functions and disease mechanisms. Their functional protein-protein interactions form the basis for many physiological processes, such as signal transduction, material transport, and cell communication. Membrane protein interactions are characterized by membrane environment dependence, spatial asymmetry, weak interaction strength, high dynamics, and a variety of interaction sites. Therefore, in situ analysis is essential for revealing the structural basis and kinetics of these proteins. This paper introduces currently available in situ analytical techniques for studying membrane protein interactions and evaluates the characteristics of each. These techniques are divided into two categories: label-based techniques (e.g., co-immunoprecipitation, proximity ligation assay, bimolecular fluorescence complementation, resonance energy transfer, and proximity labeling) and label-free techniques (e.g., cryo-electron tomography, in situ cross-linking mass spectrometry, Raman spectroscopy, electron paramagnetic resonance, nuclear magnetic resonance, and structure prediction tools). Each technique is critically assessed in terms of its historical development, strengths, and limitations. Based on the authors’ relevant research, the paper further discusses the key issues and trends in the application of these techniques, providing valuable references for the field of membrane protein research. Label-based techniques rely on molecular tags or antibodies to detect proximity or interactions, offering high specificity and adaptability for dynamic studies. For instance, proximity ligation assay combines the specificity of antibodies with the sensitivity of PCR amplification, while proximity labeling enables spatial mapping of interactomes. Conversely, label-free techniques, such as cryo-electron tomography, provide near-native structural insights, and Raman spectroscopy directly probes molecular interactions without perturbing the membrane environment. Despite advancements, these methods face several universal challenges: (1) indirect detection, relying on proximity or tagged proxies rather than direct interaction measurement; (2) limited capacity for continuous dynamic monitoring in live cells; and (3) potential artificial influences introduced by labeling or sample preparation, which may alter native conformations. Emerging trends emphasize the multimodal integration of complementary techniques to overcome individual limitations. For example, combining in situ cross-linking mass spectrometry with proximity labeling enhances both spatial resolution and interaction coverage, enabling high-throughput subcellular interactome mapping. Similarly, coupling fluorescence resonance energy transfer with nuclear magnetic resonance and artificial intelligence (AI) simulations integrates dynamic structural data, atomic-level details, and predictive modeling for holistic insights. Advances in AI, exemplified by AlphaFold’s ability to predict interaction interfaces, further augment experimental data, accelerating structure-function analyses. Future developments in cryo-electron microscopy, super-resolution imaging, and machine learning are poised to refine spatiotemporal resolution and scalability. In conclusion, in situ analysis of membrane protein interactions remains indispensable for deciphering their roles in health and disease. While current technologies have significantly advanced our understanding, persistent gaps highlight the need for innovative, integrative approaches. By synergizing experimental and computational tools, researchers can achieve multiscale, real-time, and perturbation-free analyses, ultimately unraveling the dynamic complexity of membrane protein networks and driving therapeutic discovery.
2.Efficacy of balloon stent or oral estrogen for adhesion prevention in septate uterus: A randomized clinical trial.
Shan DENG ; Zichen ZHAO ; Limin FENG ; Xiaowu HUANG ; Sumin WANG ; Xiang XUE ; Lei YAN ; Baorong MA ; Lijuan HAO ; Xueying LI ; Lihua YANG ; Mingyu SI ; Heping ZHANG ; Zi-Jiang CHEN ; Lan ZHU
Chinese Medical Journal 2025;138(8):985-987
3.The pleiotropic role of MEF2C in bone tissue development and metabolism.
Hao-Jie XIAO ; Rui-Qi HUANG ; Sheng-Jie LIN ; Jin-Yang LI ; Xue-Jie YI ; Hai-Ning GAO
Acta Physiologica Sinica 2025;77(2):374-384
The development of bone in human body and the maintenance of bone mass in adulthood are regulated by a variety of biological factors. Myocyte enhancer factor 2C (MEF2C), as one of the many factors regulating bone tissue development and balance, has been shown to play a key role in bone development and metabolism. However, there is limited systematic analysis on the effects of MEF2C on bone tissue. This article reviews the role of MEF2C in bone development and metabolism. During bone development, MEF2C promotes the development of neural crest cells (NC) into craniofacial cartilage and directly promotes cartilage hypertrophy. In terms of bone metabolism, MEF2C exhibits a differentiated regulatory model across different types of osteocytes, demonstrating both promoting and other potential regulatory effects on bone formation, with its stimulating effect on osteoclasts being determined. In view of the complex roles of MEF2C in bone tissue, this paper also discusses its effects on some bone diseases, providing valuable insights for the physiological study of bone tissue and strategies for the prevention of bone diseases.
Humans
;
MEF2 Transcription Factors/physiology*
;
Bone and Bones/metabolism*
;
Animals
;
Bone Development/physiology*
;
Osteogenesis/physiology*
;
Myogenic Regulatory Factors/physiology*
4.Comparison on chemical components of Angelicae Sinensis Radix before and after wine processing by HS-GC-IMS, HS-SPME-GC-MS, and UPLC-Q-Orbitrap-MS combined with chemometrics.
Xue-Hao SUN ; Jia-Xuan CHEN ; Jia-Xin YIN ; Xiao HAN ; Zhi-Ying DOU ; Zheng LI ; Li-Ping KANG ; He-Shui YU
China Journal of Chinese Materia Medica 2025;50(14):3909-3917
The study investigated the intrinsic changes in material basis of Angelicae Sinensis Radix during wine processing by headspace-gas chromatography-ion mobility spectrometry(HS-GC-IMS), headspace-solid phase microextraction-gas chromatography-mass spectrometry(HS-SPME-GC-MS), and ultra-high performance liquid chromatography-quadrupole-orbitrap mass spectrometry(UPLC-Q-Orbitrap-MS) combined with chemometrics. HS-GC-IMS fingerprints of Angelicae Sinensis Radix before and after wine processing were established to analyze the variation trends of volatile components and characterize volatile small-molecule substances before and after processing. Principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA) were employed for differentiation and difference analysis. A total of 89 volatile components in Angelicae Sinensis Radix were identified by HS-GC-IMS, including 14 unsaturated hydrocarbons, 16 aldehydes, 13 ketones, 9 alcohols, 16 esters, 6 organic acids, and 15 other compounds. HS-SPME-GC-MS detected 118 volatile components, comprising 42 unsaturated hydrocarbons, 11 aromatic compounds, 30 alcohols, 8 alkanes, 6 organic acids, 4 ketones, 7 aldehydes, 5 esters, and 5 other volatile compounds. UPLC-Q-Orbitrap-MS identified 76 non-volatile compounds. PCA revealed distinct clusters of raw and wine-processed Angelicae Sinensis Radix samples across the three detection methods. Both PCA and OPLS-DA effectively discriminated between the two groups, and 145 compounds(VIP>1) were identified as critical markers for evaluating processing quality, including 4-methyl-3-penten-2-one, ethyl 2-methylpentanoate, and 2,4-dimethyl-1,3-dioxolane detected by HS-GC-IMS, angelic acid, β-pinene, and germacrene B detected by HS-SPME-GC-MS, and L-tryptophan, licoricone, and angenomalin detected by UPLC-Q-Orbitrap-MS. In conclusion, the integration of the three detection methods with chemometrics elucidates the differences in the chemical material basis between raw and wine-processed Angelicae Sinensis Radix, providing a scientific foundation for understanding the processing mechanisms and clinical applications of wine-processed Angelicae Sinensis Radix.
Wine/analysis*
;
Gas Chromatography-Mass Spectrometry/methods*
;
Chromatography, High Pressure Liquid/methods*
;
Angelica sinensis/chemistry*
;
Solid Phase Microextraction/methods*
;
Drugs, Chinese Herbal/isolation & purification*
;
Chemometrics
;
Volatile Organic Compounds/chemistry*
;
Principal Component Analysis
;
Ion Mobility Spectrometry/methods*
5.Two new taraxerane triterpenoids from mastic.
Zhi-Qiang ZHAO ; Xue-Rui AN ; Tian-Zhi LI ; Ting HE ; Hao-Kun HOU ; Wei LIU ; Tao YUAN
China Journal of Chinese Materia Medica 2025;50(13):3723-3743
Three taraxerane nortriterpenoids were isolated from mastic by using various modern chromatographic separation techniques. They were identified as(5R,8R,9R,10S,11S,12R,13S,17R,18R)-28-norlupa-11,12-epoxy-14-taraxerene-3,16-dione(1),(5R,8R,9R,10S,11S,12R,13S,17S,18S)-17-hydroxy-28-norlupa-11,12-epoxy-14-taraxerene-3-one(2), and(5R,8R,9R,10R,11S,12R,13R,14S,17S,18S)-14,17-epoxy-28-norlupa-11,12-oxidotaraxerone(3) through the high-resolution electrospray ionization mass spectrometry(HR-ESI-MS), infrared(IR), ultraviolet(UV), nuclear magnetic resonance(NMR), and single-crystal X-ray diffraction techniques as well as comparison with literature data. Compounds 1-3 were C-28 nortriterpenoids and isolated from mastic for the first time, and compounds 1-2 were new ones. In the model for RAW264.7 cell anti-inflammation induced by lipopolysaccharide(LPS), compound 1 demonstrates an inhibitory effect on nitric oxide(NO) [IC_(50)=(13.38±0.68) μmol·L~(-1)], comparable to the activity of the positive control dexamethasone [IC_(50)=(14.59±1.49) μmol·L~(-1)]. Compounds 2 and 3 exhibit weaker inhibitory effects, with IC_(50) values of(24.17±2.56) and(22.25±2.84) μmol·L~(-1), respectively.
Animals
;
Mice
;
Triterpenes/isolation & purification*
;
Drugs, Chinese Herbal/isolation & purification*
;
Mastic Resin/chemistry*
;
Nitric Oxide
;
Molecular Structure
;
Macrophages/immunology*
;
RAW 264.7 Cells
6.Observation on the therapeutic effect of a modified Devine procedure with subcutaneous sliding fixation method for concealed penis.
Mohammed Abdulkarem AL-QAISI ; Hai-Fu TIAN ; Jia-Jin FENG ; Ke-Ming CHEN ; Jin ZHANG ; Yun-Shang TUO ; Xue-Hao WANG ; Bin-Cheng HUANG ; Muhammad Arslan Ul HASSAN ; Rui HE ; Guang-Yong LI
Asian Journal of Andrology 2025;27(4):470-474
To evaluate the therapeutic effect of a modified Devine procedure with a subcutaneous sliding fixation method for the treatment of congenital concealed penis, we retrospectively selected 45 patients with congenital concealed penises who were admitted to General Hospital of Ningxia Medical University (Yinchuan, China) between September 2020 and November 2023. In all cases, the penis was observed to be short, and retracting the skin at the base revealed a normal penile body, which immediately returned to its original position upon release. All patients underwent the modified Devine procedure with subcutaneous sliding fixation and completed a 12-week postoperative follow-up. A statistically significant increase in penile length was observed postoperatively, with the median length increasing from 4.0 (interquartile range [IQR]: 3.5-4.8; 95% confidence interval [CI]: 3.9-4.4) cm to 8.0 (IQR: 7.8-8.0; 95% CI: 7.7-7.9) cm, with P < 0.001. The parents were satisfied with the outcomes, including increased penile length, improved hygiene, and enhanced esthetics. Except for mild foreskin edema in all cases, no complications (such as infections, skin necrosis, or penile retraction) were observed. The edema was resolved within 4 weeks after the operation. This study demonstrates that the modified Devine procedure utilizing the subcutaneous sliding fixation method yields excellent outcomes with minimal postoperative complications, reduced penile retraction, and high satisfaction rates among patients and their families.
Humans
;
Male
;
Penis/abnormalities*
;
Retrospective Studies
;
Urologic Surgical Procedures, Male/methods*
;
Treatment Outcome
;
Child
;
Plastic Surgery Procedures/methods*
7.A Study of Flow Sorting Lymphocyte Subsets to Detect Epstein-Barr Virus Reactivation in Patients with Hematological Malignancies.
Hui-Ying LI ; Shen-Hao LIU ; Fang-Tong LIU ; Kai-Wen TAN ; Zi-Hao WANG ; Han-Yu CAO ; Si-Man HUANG ; Chao-Ling WAN ; Hai-Ping DAI ; Sheng-Li XUE ; Lian BAI
Journal of Experimental Hematology 2025;33(5):1468-1475
OBJECTIVE:
To analyze the Epstein-Barr virus (EBV) load in different lymphocyte subsets, as well as clinical characteristics and outcomes in patients with hematologic malignancies experiencing EBV reactivation.
METHODS:
Peripheral blood samples from patients were collected. B, T, and NK cells were isolated sorting with magnetic beads by flow cytometry. The EBV load in each subset was quantitated by real-time quantitative polymerase chain reaction (RT-qPCR). Clinical data were colleted from electronic medical records. Survival status was followed up through outpatient visits and telephone calls. Statistical analyses were performed using SPSS 25.0.
RESULTS:
A total of 39 patients with hematologic malignancies were included, among whom 35 patients had undergone allogeneic hematopoietic stem cell transplantation (allo-HSCT). The median time to EBV reactivation was 4.8 months (range: 1.7-57.1 months) after allo-HSCT. EBV was detected in B, T, and NK cells in 20 patients, in B and T cells in 11 patients, and only in B cells in 4 patients. In the 35 patients, the median EBV load in B cells was 2.19×104 copies/ml, significantly higher than that in T cells (4.00×103 copies/ml, P <0.01) and NK cells (2.85×102 copies/ml, P <0.01). Rituximab (RTX) was administered for 32 patients, resulting in EBV negativity in 32 patients with a median time of 8 days (range: 2-39 days). Post-treatment analysis of 13 patients showed EBV were all negative in B, T, and NK cells. In the four non-transplant patients, the median time to EBV reactivation was 35 days (range: 1-328 days) after diagnosis of the primary disease. EBV was detected in one or two subsets of B, T, or NK cells, but not simultaneously in all three subsets. These patients received a combination chemotherapy targeting at the primary disease, with 3 patients achieving EBV negativity, and the median time to be negative was 40 days (range: 13-75 days).
CONCLUSION
In hematologic malignancy patients after allo-HSCT, EBV reactivation commonly involves B, T, and NK cells, with a significantly higher viral load in B cells compared to T and NK cells. Rituximab is effective for EBV clearance. In non-transplant patients, EBV reactivation is restricted to one or two lymphocyte subsets, and clearance is slower, highlighting the need for prompt anti-tumor therapy.
Humans
;
Hematologic Neoplasms/virology*
;
Herpesvirus 4, Human/physiology*
;
Epstein-Barr Virus Infections
;
Hematopoietic Stem Cell Transplantation
;
Virus Activation
;
Lymphocyte Subsets/virology*
;
Flow Cytometry
;
Killer Cells, Natural/virology*
;
Male
;
Female
;
B-Lymphocytes/virology*
;
Viral Load
;
Adult
;
T-Lymphocytes/virology*
;
Middle Aged
8.Diagnostic value of ultrasonic shear wave elastography for clinically significant prostate cancer.
Fang-Rui YANG ; Yong-Hao JI ; Li-Tao RUAN ; Jian-Xue LIU ; Yao-Ren ZHANG ; Xiao ZHANG ; Qin-Yun WAN ; Si-Fan REN
National Journal of Andrology 2025;31(6):505-511
OBJECTIVE:
To explore the diagnostic value of shear wave elastography (SWE) for clinically significant prostate cancer (csPCa).
METHODS:
We retrospectively analyzed the clinical data of 359 cases with suspected prostate cancer (PCa) in Baoji Central Hospital from June 2017 to July 2023. All the patients underwent the following examinations in the order of serum prostate-specific antigen (PSA) testing, transrectal ultrasonography (TRUS), measurement of the stiffness of the entire prostate gland by SWE, and TRUS-guided prostate puncture biopsy. The stiffness of the entire prostate gland was defined as the average of Young's modulus at both sides of the base, middle, and apex of the prostate, including the maximum Young's modulus (Emax), mean Young's modulus (Emean), and minimum Young's modulus (Emin). We analyzed the correlation of the parameters of the stiffness of the entire prostate gland with the pathological results, focusing on their diagnostic performance for csPCa.
RESULTS:
Of the 359 cases, 189 were diagnosed by pathological puncture biopsy as BPH, 26 as non-csPCa, and 144 as csPCa. The PSA level, Emax, Emean and Emin were significantly higher in the csPCa than those in the BPH and non-csPCa groups (all P < 0.01), but showed no statistically significant difference between the BPH and non-csPCa groups (all P > 0.05). The area under the receiver operating characteristic curve (AUC), optimal cut-off value, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy of Emax in the diagnosis of csPCa were 0.852, 143.92 kPa, 72.22%, 84.65%, 75.91%, 81.98% and 79.67%; those of Emean were 0.868, 82.42 kPa, 67.36%, 91.16%, 83.62%, 80.66% and 81.62%; and those of Emin were 0.682, 32.73 kPa, 47.22%, 89.30%, 73.91%, 71.54% and 72.14%, respectively. In the non-csPCa group, Emax, Emean and Emin were found below the optimal cut-off value in 73.08% (19/26), 92.31% (24/26) and 88.46% (23/26), respectively.
CONCLUSION
The stiffness of the entire prostate gland measured by SWE contributes to the diagnosis of csPCa, reduces unnecessary detection of non-csPCa, and provides some reference for its active surveillance.
Humans
;
Male
;
Prostatic Neoplasms/diagnosis*
;
Elasticity Imaging Techniques
;
Retrospective Studies
;
Prostate/pathology*
;
Prostate-Specific Antigen/blood*
;
Aged
;
Middle Aged
9.Reduction in mitochondrial DNA methylation leads to compensatory increase in mitochondrial DNA content: novel blood-borne biomarkers for monitoring occupational noise.
Jia-Hao YANG ; Zhuo-Ran LI ; Zhuo-Zhang TAN ; Wu-Zhong LIU ; Qiang HOU ; Pin SUN ; Xue-Tao ZHANG
Environmental Health and Preventive Medicine 2025;30():40-40
BACKGROUND:
Prolonged occupational noise exposure poses potential health risks, but its impact on mitochondrial DNA (mtDNA) damage and methylation patterns remains unclear.
METHOD:
We recruited 306 factory workers, using average binaural high-frequency hearing thresholds from pure-tone audiometry to assess noise exposure. MtDNA damage was evaluated through mitochondrial DNA copy number (mtDNAcn) and lesion rate, and mtDNA methylation changes were identified via pyrophosphate sequencing.
RESULTS:
There was a reduction in MT-RNR1 methylation of 4.52% (95% CI: -7.43% to -1.62%) among workers with abnormal hearing, whereas changes in the D-loop region were not statistically significant (β = -2.06%, 95% CI: -4.44% to 0.31%). MtDNAcn showed a negative association with MT-RNR1 methylation (β = -0.95, 95% CI: -1.23 to -0.66), while no significant link was found with D-loop methylation (β = -0.05, 95% CI: -0.58 to 0.48). Mediation analysis indicated a significant increase in mtDNAcn by 10.75 units (95% CI: 3.00 to 21.26) in those with abnormal hearing, with MT-RNR1 methylation mediating 35.9% of this effect.
CONCLUSIONS
These findings suggest that occupational noise exposure may influence compensatory increases in mtDNA content through altered MT-RNR1 methylation.
Humans
;
DNA, Mitochondrial
;
DNA Methylation
;
Male
;
Adult
;
Noise, Occupational/adverse effects*
;
Middle Aged
;
Occupational Exposure/adverse effects*
;
Biomarkers/blood*
;
Female

Result Analysis
Print
Save
E-mail