1.Research on Magnetic Stimulation Intervention Technology for Alzheimer’s Disease Guided by Heart Rate Variability
Shu-Ting CHEN ; Du-Yan GENG ; Chun-Meng FAN ; Wei-Ran ZHENG ; Gui-Zhi XU
Progress in Biochemistry and Biophysics 2025;52(5):1264-1278
ObjectiveNon-invasive magnetic stimulation technology has been widely used in the treatment of Alzheimer’s disease (AD), but there is a lack of convenient and timely methods for evaluating and providing feedback on the effectiveness of the stimulation, which can be used to guide the adjustment of the stimulation protocol. This study aims to explore the possibility of heart rate variability (HRV) in diagnosing AD and guiding AD magnetic stimulation intervention techniques. MethodsIn this study, we used a 40 Hz, 10 mT pulsed magnetic field to expose AD mouse models to whole-body exposure for 18 d, and detected the behavioral and electroencephalographic signals before and after exposure, as well as the instant electrocardiographic signals after exposure every day. ResultsUsing one-way ANOVA and Pearson correlation coefficient analysis, we found that some HRV indicators could identify AD mouse models as accurately as behavioral and electroencephalogram(EEG) changes (P<0.05) and significantly distinguish the severity of the disease (P<0.05), including rMSSD, pNN6, LF/HF, SD1/SD2, and entropy arrangement. These HRV indicators showed good correlation and statistical significance with behavioral and EEG changes (r>0.3, P<0.05); HRV indicators were significantly modulated by the magnetic field exposure before and after the exposure, both of which were observed in the continuous changes of electrocardiogram (ECG) (P<0.05), and the trend of the stimulation effect was more accurately observed in the continuous changes of ECG. ConclusionHRV can accurately reflect the pathophysiological changes and disease degree, quickly evaluate the effect of magnetic stimulation, and has the potential to guide the pattern of magnetic exposure, providing a new idea for the study of personalized electromagnetic neuroregulation technology for brain diseases.
2.Inhibition of HDAC3 Promotes Psoriasis Development in Mice Through Regulating Th17
Fan XU ; Xin-Rui ZHANG ; Yang-Chen XIA ; Wen-Ting LI ; Hao CHEN ; An-Qi QIN ; Ai-Hong ZHANG ; Yi-Ran ZHU ; Feng TIAN ; Quan-Hui ZHENG
Progress in Biochemistry and Biophysics 2025;52(4):1008-1017
ObjectiveTo investigate the influence of histone deacetylase 3 (HDAC3) on the occurrence, development of psoriasis-like inflammation in mice, and the relative immune mechanisms. MethodsHealthy C57BL/6 mice aged 6-8 weeks were selected and randomly divided into 3 groups: control group (Control), psoriasis model group (IMQ), and HDAC3 inhibitor RGFP966-treated psoriasis model group (IMQ+RGFP966). One day prior to the experiment, the back hair of the mice was shaved. After a one-day stabilization period, the mice in Control group was treated with an equal amount of vaseline, while the mice in IMQ group was treated with imiquimod (62.5 mg/d) applied topically on the back to establish a psoriasis-like inflammation model. The mice in IMQ+RGFP966 group received intervention with a high dose of the HDAC3-selective inhibitor RGFP966 (30 mg/kg) based on the psoriasis-like model. All groups were treated continuously for 5 d, during which psoriasis-like inflammation symptoms (scaling, erythema, skin thickness), body weight, and mental status were observed and recorded, with photographs taken for documentation. After euthanasia, hematoxylin-eosin (HE) staining was used to assess the effect of RGFP966 on the skin tissue structure of the mice, and skin thickness was measured. The mRNA and protein expression levels of HDAC3 in skin tissues were detected using reverse transcription real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot (WB), respectively. Flow cytometry was employed to analyze neutrophils in peripheral blood and lymph nodes, CD4+ T lymphocytes, CD8+ T lymphocytes in peripheral blood, and IL-17A secretion by peripheral blood CD4+ T lymphocytes. Additionally, spleen CD4+ T lymphocyte expression of HDAC3, CCR6, CCR8, and IL-17A secretion levels were analyzed. Immunohistochemistry was used to detect the localization and expression levels of HDAC3, IL-17A, and IL-10 in skin tissues. ResultsCompared with the Control group, the IMQ group exhibited significant psoriasis-like inflammation, characterized by erythema, scaling, and skin wrinkling. Compared with the IMQ group, RGFP966 exacerbated psoriasis-like inflammatory symptoms, leading to increased hyperkeratosis. The psoriasis area and severity index (PASI) skin symptom scores were higher in the IMQ group than those in the Control group, and the scores were further elevated in the IMQ+RGFP966 group compared to the IMQ group. Skin thickness measurements showed a trend of IMQ+RGFP966>IMQ>Control. The numbers of neutrophils in the blood and lymph nodes increased sequentially in the Control, IMQ, and IMQ+RGFP966 groups, with a similar trend observed for CD4+ and CD8+ T lymphocytes in the blood. In skin tissues, compared with the Control group, the mRNA and protein levels of HDAC3 decreased in the IMQ group, but RGFP966 did not further reduce these expressions. HDAC3 was primarily located in the nucleus. Compared with the Control group, the nuclear HDAC3 content decreased in the skin tissues of the IMQ group, and RGFP966 further reduced nuclear HDAC3. Compared with the Control and IMQ groups, RGFP966 treatment decreased HDAC3 expression in splenic CD4+ and CD8+ T cells. RGFP966 treatment increased the expression of CCR6 and CCR8 in splenic CD4+ T cells and enhanced IL-17A secretion by peripheral blood and splenic CD4+ T lymphocytes. Additionally, compared with the IMQ group, RGFP966 reduced IL-10 protein levels and upregulated IL-17A expression in skin tissues. ConclusionRGFP966 exacerbates psoriatic-like inflammatory responses by inhibiting HDAC3, increasing the secretion of the cytokine IL-17A, and upregulating the expression of chemokines CCR8 and CCR6.
3.Alanine transferase test results and exploration of threshold adjustment strategies for blood donors in Shenzhen, China
Xin ZHENG ; Yuanye XUE ; Haobiao WANG ; Litiao WU ; Ran LI ; Yingnan DANG ; Tingting CHEN ; Xiaoxuan XU ; Xuezhen ZENG ; Jinfeng ZENG
Chinese Journal of Blood Transfusion 2025;38(4):488-494
[Objective] To conduct a retrospective statistical comparison of alanine aminotransferase (ALT) test values in blood donors prior to blood collection, aiming to analyze the objective characteristics of the population with elevated ALT levels (ALT>50 U/L) and provide reference data for adjusting the screening eligibility threshold for ALT. [Methods] The preliminary ALT screening data of 30 341 blood donor samples collected prior to blood donation from three smart blood donation sites at the Shenzhen Blood Center between 2022 and 2023 were extracted and compared with data from a health examination department of a tertiary hospital in Shenzhen (representing the general population, n=24 906). Both datasets were categorized and statistically described. A retrospective analysis was conducted to examine the associations between ALT test results and factors such as donors' gender, age, ethnicity, donation site, donation season, and frequency of blood donation. [Results] The ALT levels in both blood donors and the general population were non-normally distributed. The 95th percentile of ALT values was calculated as 61.4 U/L (male: 67.8 U/L, female: 39.3 U/L) for blood donors and 58.1 U/L (male: 63.7 U/L, female: 51.2 U/L) for the general population. The non-compliance rates (ALT>50 U/L) were 7.65% (2 321/30 341) in blood donors and 7.08% (1 763/24 906) in the general population. There were significant differences (P<0.05) in the ALT failure rate among blood donors based on gender, age, and donation site, but no significant differences (P>0.05) during the blood donation season. There was no statistically significant difference (P>0.05) in the positive rates of four serological markers (HBsAg, anti HCV, HIV Ag/Ab, anti TP) for blood screening pathogens between ALT unqualified and qualified individuals (2.05% vs 1.5%). If the ALT qualification threshold was raised from 50 U/L to 90 U/L, the non qualification rates of male and female blood donors would decrease from 9.82% (2 074/21 125) to 2.23% (471/21 125) and from 2.70% (249/9 216) to 0.75% (69/9 216), respectively. Among the 154 blood donors who donated blood more than 3 times, 88.31% of the 248 ALT test results were in the range of 50-90 U/L. Among them, 9 cases had ALT>130 U/L, and ALT was converted to qualified in subsequent blood donations. [Conclusion] There are differences in the ALT failure rate among blood donors of different genders and ages, and different blood donation sites and operators can also affect the ALT detection values of blood donors. The vast majority of blood donors with ALT failure are caused by transient and non pathological factors. With the widespread use of blood virus nucleic acid testing, appropriately increasing the ALT qualification threshold for blood donors can expand the qualified population and alleviate the shortage of blood sources, and the risk of blood safety will not increase.
4.Treatment of MASLD from Intestinal Microbial-mitochondrial Interactions Based on "Spleen and Stomach-Xuanluo" Theory
Ran ZHAO ; Bingjiu LU ; Jingran SUN ; Jialian ZHENG ; Qing XU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(24):220-227
Traditional Chinese medicine (TCM) has long recognized metabolism-associated fatty liver disease (MASLD). The Classic of Difficulties (Nan Jing) records that "the accumulation of the liver is called obese Qi". ZHANG Jingyue also stated, "People with spleen and stomach deficiency and weakness or imbalance often suffer from diseases of accumulation". According to syndrome differentiation of the Zang-fu organs, modern physicians generally believe that the key pathogenesis of MASLD lies in the deficiency of spleen and stomach functions. However, MASLD is a chronic and complex disease, and its pathological characteristics cannot be fully explained by a single Zang-Fu syndrome differentiation. The concepts of sweat pores and collateral vessels emerged as early as the Huangdi's Internal Classic (Huang Di Nei Jing), and later TCM scholars, based on the idea that "sweat pore is the gateway of collateral vessels" proposed the concept of Xuanluo (sweat pores-collateral vessels). Xuanluo refers to fine structures widely distributed throughout the human body, serving as hubs and channels that regulate the movement and distribution of Qi, blood, and body fluids. By linking the Zang-Fu organs with Xuanluo, a theoretical framework of Qi, blood, and body fluid circulation centered on the "spleen and stomach-Xuanluo" as a whole was established, providing a new perspective for analyzing the essential pathogenesis of MASLD. Combined with the mechanisms involved in the formation and progression of MASLD, the intrinsic correlations between TCM pathogenesis and modern microscopic mechanisms are further analyzed. Modern studies have shown that intestinal microbial dysbiosis and mitochondrial dysfunction are pathological mechanisms involved in the occurrence and development of MASLD, but few have discussed the two as an integrated system. Existing research has confirmed that intestinal microorganisms can affect mitochondrial energy metabolism and oxidative stress through their metabolites, leading to hepatic energy metabolism disorders, oxidative stress (OS), and inflammation, thereby promoting MASLD progression. Focusing on the correspondence between the "spleen and stomach-Xuanluo" theory and the intestinal microorganism-mitochondrion micro-pathological mechanism, it is proposed that the spleen and stomach share similarities with intestinal microorganisms in the generation of Qi, blood, and body fluids as well as in the regulation of Qi movement, while Xuanluo and mitochondria have commonalities in energy regulation. Moreover, harmonizing the spleen and stomach to ensure unobstructed Xuanluo is the key to maintaining the normal interaction mechanism between intestinal microorganisms and mitochondria. Based on the correlation between the "spleen and stomach-Xuanluo" theory and the intestinal microorganism-mitochondrion interaction, this paper reveals that the essence of MASLD pathogenesis lies in spleen and stomach dysfunction, specifically, failure of the spleen to ascend the clear and failure of the stomach to descend the turbid, resulting in insufficient transformation of Qi and blood, impaired nourishment of Xuanluo, stagnation of Qi and blood, and the long-term formation of phlegm and blood stasis in the liver. Furthermore, it explores the preventive and therapeutic effects of tonifying the spleen and stomach, dredging Xuanluo and collaterals, unblocking the bowels, and regulating Qi in the treatment of MASLD, thereby providing new insights for its prevention and therapy.
5.NFKBIE: Novel Biomarkers for Diagnosis, Prognosis, and Immunity in Colorectal Cancer: Insights from Pan-cancer Analysis.
Chen Yang HOU ; Peng WANG ; Feng Xu YAN ; Yan Yan BO ; Zhen Peng ZHU ; Xi Ran WANG ; Shan LIU ; Dan Dan XU ; Jia Jia XIAO ; Jun XUE ; Fei GUO ; Qing Xue MENG ; Ren Sen RAN ; Wei Zheng LIANG
Biomedical and Environmental Sciences 2025;38(10):1320-1325
6.Systematic review of current research on vaccination of congenital heart disease children in China
Na LIU ; Huaqing WANG ; Lin LUAN ; Juan XU ; Benfeng ZHENG ; Ran HU
Shanghai Journal of Preventive Medicine 2024;36(4):415-421
ObjectiveCongenital heart disease (CHD) is a common birth defect in children, with its incidence increasing annually. Because of their special health status, the vaccination situation for children with CHD has become a focal point of attention. This paper systematically reviews the current status of vaccination among children with CHD in China to identify existing issues in vaccination efforts for children with CHD, provide guidance for increasing vaccination rates among children with CHD, reduce the incidence of vaccine-preventable diseases, and provide ideas for subsequent research. MethodsLiterature on the vaccination of children with CHD in China was searched in both Chinese and English databases, including CNKI, Wanfang Data Knowledge Service Platform, VIP, Chinese Biomedical and Web of Science, PubMed, EmBase, and the Cochrane Library. Relevant literature was identified based on inclusion and exclusion criteria, and data extraction was carried out to summarize the research results. ResultsA total of 15 studies were included. Three articles focusing on expert consensus (guideline recommendations) for vaccination of children with CHD in China all agreed that vaccination is both feasible and necessary for children with CHD. Systematic analysis found that the overall timely vaccination rate for children with CHD was between 34% and 50%, with a notable delay in vaccination. However, after professional outpatient assessment, the vast majority of children with CHD were advised to be vaccinated according to the national recommended schedule, with only about 2% of them being advised to delay vaccination. The proportion of children with CHD who reported suspected adverse events following immunization (AEFI) was low and not significantly different from that of healthy/control children. ConclusionThe safety of vaccinations for children with CHD in China is relatively high, but the total timely vaccination rate is currently low. In order to improve the coverage and timeliness of vaccination in children with CHD, it is recommended that relevant departments provide vaccination policy support. There is a lack of research on the effectiveness of vaccination in children with CHD, so further studies are urgently needed to further improve the vaccination strategy for children with CHD in China.
7.The Catalytic Mechanism and Activity Modulation of Manganese Superoxide Dismutase
Xu ZHANG ; Lei ZHANG ; Peng-Lin XU ; Tian-Ran LI ; Rui-Qing CHAO ; Zheng-Hao HAN
Progress in Biochemistry and Biophysics 2024;51(1):20-32
Manganese superoxide dismutase catalyzes the dismutation of two molecules of superoxide radicals to one molecule of oxygen and one molecule of hydrogen peroxide. The oxidation of superoxide anion to oxygen by Mn3+SOD proceeds at a rate close to diffusion. The reduction of superoxide anion to hydrogen peroxide by Mn2+SOD can be progressed parallelly in either a fast or a slow cycle pathway. In the slow cycle pathway, Mn2+SOD forms a product inhibitory complex with superoxide anion, which is protonated and then slowly releases hydrogen peroxide out. In the fast cycle pathway, superoxide anion is directly converted into product hydrogen peroxide by Mn2+SOD, which facilitates the revival and turnover of the enzyme. We proposed for the first time that temperature is a key factor that regulates MnSOD into the slow- or fast-cycle catalytic pathway. Normally, the Mn2+ rest in the pent-coordinated state with four amino acid residues (His26, His74, His163 and Asp159) and one water (WAT1) in the active center of MnSOD. The sixth coordinate position on Mn (orange arrow) is open for water (WAT2, green) or O2• to coordinate. With the cold contraction in the active site as temperature decreases, WAT2 is closer to Mn, which may spatially interfere with the entrance of O2• into the inner sphere, and avoid O2•/Mn2+ coordination to reduce product inhibition. Low temperature compels the reaction into the faster outer sphere pathway, resulting in a higher gating ratio for the fast-cycle pathway. As the temperature increases in the physiological temperature range, the slow cycle becomes the mainstream of the whole catalytic reaction, so the increasing temperature in the physiological range inhibits the activity of the enzyme. The biphasic enzymatic kinetic properties of manganese superoxide dismutase can be rationalized by a temperature-dependent coordination model of the conserved active center of the enzyme. When the temperature decreases, a water molecule (or OH-) is close to or even coordinates Mn, which can interfere with the formation of product inhibition. So, the enzymatic reaction occurs mainly in the fast cycle pathway at a lower temperature. Finally, we describe the several chemical modifications of the enzyme, indicating that manganese superoxide dismutase can be rapidly regulated in many patterns (allosteric regulation and chemical modification). These regulatory modulations can rapidly and directly change the activation of the enzyme, and then regulate the balance and fluxes of superoxide anion and hydrogen peroxide in cells. We try to provide a new theory to reveal the physiological role of manganese superoxide dismutase and reactive oxygen species.
8.Effect of LAG3 molecule on B lymphocyte subsets and its function in the liver of mice infected with Echinococcus multilocularis
Xu-Ran ZHENG ; Bing-Qing DENG ; Xue-Jiao KANG ; Yin-Shi LI ; Ainiwaer ABIDAN ; Qian YU ; Rousu ZIBIGU ; Duolikun ADILAI ; Mao-Lin WANG ; Hui WANG ; Chuan-Shan ZHANG ; Jing LI
Chinese Journal of Zoonoses 2024;40(6):529-536
This study was aimed at investigating the effect of lymphocyte activation gene-3(LAG3)on liver B lymphocyte subsets and their functions in WT and LAG3-KO mice infected with Echinococcus multilocularis(E.multilocularis).In a mouse model of E.multilocularis infection,the expression and localization of CD19 and α-SMA in liver were detected by immu nohistochemistry.CD80,CD86 and MHC-Ⅱ molecules expressed on B cells and their subsets in mice liver were detected by flow cytometry.After 12 weeks of infection,the area and percentage of CD19 in LAG3-KO group was slightly higher than that in WT group,but the difference was not statistically(t=-1.241、-1.237,P>0.05).The area and percentage of a-SMA in LAG3-KO group was higher than that in WT group(t=-3.224、-3.227,P<0.05).The proportion of CD80 and MHC-Ⅱ molecules expressed on liver B cells in LAG3-KO group was up-regulated(t=-2.379,-3.321,P<0.05).The percentage of liver B2 cells in LAG3-KO group was higher than that in WT group(t=-2.695,P<0.05).The expression of CD80 on Blb cells in LAG3-KO group was significantly up-regulated(t=-5.315,P<0.001).The proportion of CD80 of B2 cells in LAG3-KO group was lower than that in WT group(t=2.806,P<0.05).The expression of MHC-Ⅱ molecule in B2 cells in LAG3-KO group was up-regulated(t=-4.227,P<0.01).It is suggested that LAG3 molecules affected the B cell subsets and func-tion of mouse liver in the middle stage of E.multilocularis infection,especially B2 lymphocytes.LAG3 molecule exerted an in-hibitory effect on the activation of B cells and the expression of MHC-class Ⅱ molecules,suggesting that it may be involved in B cell exhaustion caused by E.multilocularis.
9.Establishment and evaluation of a dual fluorescent RT-LAMP assay for PEDV and TGEV detection
Ran ZANG ; Feifei XU ; Danyang ZHENG ; Zhiqian ZHAO ; Mi ZHAO ; Hui WANG ; Jie GAO ; Yang MU
Chinese Journal of Veterinary Science 2024;44(8):1600-1610
To develop a rapid differential detection method for porcine epidemic diarrhea virus(PEDV)and transmissible gastroenteritis virus(PEDV),M gene sequences of PEDV and TGEV were compared,the inner and outer primer pairs and probes were designed according to the highly conserved region.PEDV-Probe was labeled with FAM at5'end and BHQ1 at 3'end.TGEV-Probe was labeled with CY5.5 at the 5'end and BHQ2 at the 3'end.After optimizing the reaction condi-tions and system,a dual fluorescent RT-LAMP assay for PEDV and TGEV rapid identification was established.The amplification could be completed within 60 min in a 63 ℃ water bath and then stopped at 85 ℃ for 10 min.Then the tubes were placed in a multicolor imaging system,and the re-sults could be observed under 520 nm and 690 nm dual channels.There was no cross-reaction when other common swine viral pathogens were detected by this method.The sensitivity of the assay was evaluated with a 10-fold diluted recombinant plasmid as templates.The lowest detection limit was 102 copies/μL recombinant plasmid,which was 10 times more sensitive than the conventional RT-PCR method.Seventy-two PEDV-positive samples,49 TGEV-positive samples,and 40 PEDV and TGEV co-infected samples were detected from 175 anal swab samples of diarrheic piglets by the established method,which were all higher than the detection rates of the conventional RT-PCR method.The dual fluorescent RT-LAMP method established in this study can be used to amplify the target gene in an ordinary water bath without gel electrophoresis,which provides technical sup-port for rapid and convenient differential diagnosis of PED and TGE and simultaneous detection of PEDV and TGEV co-infection.
10.Application and Prospect of Therapeutic Radionuclides
Hongzhu LIU ; Liping YANG ; Yuxuan ZHENG ; Chang LU ; Ran ZHANG ; Yuwei LIANG ; Xu GAO ; Zhenjiang ZHANG ; Minghui AN ; Jing XIE ; Jian GONG
Herald of Medicine 2024;43(10):1603-1609
Targeted radiation therapy using radionuclides is a favored approach for treating tumors.This procedure involves the delivery of drugs to the lesion site via carriers or interventional methods,followed by the emission of radiation energy that selectively irradiates the lesion tissue.This approach minimizes damage to normal tissue and achieves the desired therapeutic effect.Factors such as the type of therapeutic radionuclide,radiation energy,physical half-life,method of preparation,and toxicity determine their clinical application.In this paper,the characteristics and clinical application of therapeutic radionuclides were reviewed to providing reference for the clinical application of targeted therapeutic radionuclides.

Result Analysis
Print
Save
E-mail