1.Applications of EEG Biomarkers in The Assessment of Disorders of Consciousness
Zhong-Peng WANG ; Jia LIU ; Long CHEN ; Min-Peng XU ; Dong MING
Progress in Biochemistry and Biophysics 2025;52(4):899-914
Disorders of consciousness (DOC) are pathological conditions characterized by severely suppressed brain function and the persistent interruption or loss of consciousness. Accurate diagnosis and evaluation of DOC are prerequisites for precise treatment. Traditional assessment methods are primarily based on behavioral scales, which are inherently subjective and rely on observable behaviors. Moreover, traditional methods have a high misdiagnosis rate, particularly in distinguishing minimally conscious state (MCS) from vegetative state/unresponsive wakefulness syndrome (VS/UWS). This diagnostic uncertainty has driven the exploration of objective, reliable, and efficient assessment tools. Among these tools, electroencephalography (EEG) has garnered significant attention for its non-invasive nature, portability, and ability to capture real-time neurodynamics. This paper systematically reviews the application of EEG biomarkers in DOC assessment. These biomarkers are categorized into 3 main types: resting-state EEG features, task-related EEG features, and features derived from transcranial magnetic stimulation-EEG (TMS-EEG). Resting-state EEG biomarkers include features based on spectrum, microstates, nonlinear dynamics, and brain network metrics. These biomarkers provide baseline representations of brain activity in DOC patients. Studies have shown their ability to distinguish different levels of consciousness and predict clinical outcomes. However, because they are not task-specific, they are challenging to directly associate with specific brain functions or cognitive processes. Strengthening the correlation between resting-state EEG features and consciousness-related networks could offer more direct evidence for the pathophysiological mechanisms of DOC. Task-related EEG features include event-related potentials, event-related spectral modulations, and phase-related features. These features reveal the brain’s responses to external stimuli and provide dynamic information about residual cognitive functions, reflecting neurophysiological changes associated with specific cognitive, sensory, or behavioral tasks. Although these biomarkers demonstrate substantial value, their effectiveness rely on patient cooperation and task design. Developing experimental paradigms that are more effective at eliciting specific EEG features or creating composite paradigms capable of simultaneously inducing multiple features may more effectively capture the brain activity characteristics of DOC patients, thereby supporting clinical applications. TMS-EEG is a technique for probing the neurodynamics within thalamocortical networks without involving sensory, motor, or cognitive functions. Parameters such as the perturbational complexity index (PCI) have been proposed as reliable indicators of consciousness, providing objective quantification of cortical dynamics. However, despite its high sensitivity and objectivity compared to traditional EEG methods, TMS-EEG is constrained by physiological artifacts, operational complexity, and variability in stimulation parameters and targets across individuals. Future research should aim to standardize experimental protocols, optimize stimulation parameters, and develop automated analysis techniques to improve the feasibility of TMS-EEG in clinical applications. Our analysis suggests that no single EEG biomarker currently achieves an ideal balance between accuracy, robustness, and generalizability. Progress is constrained by inconsistencies in analysis methods, parameter settings, and experimental conditions. Additionally, the heterogeneity of DOC etiologies and dynamic changes in brain function add to the complexity of assessment. Future research should focus on the standardization of EEG biomarker research, integrating features from resting-state, task-related, and TMS-EEG paradigms to construct multimodal diagnostic models that enhance evaluation efficiency and accuracy. Multimodal data integration (e.g., combining EEG with functional near-infrared spectroscopy) and advancements in source localization algorithms can further improve the spatial precision of biomarkers. Leveraging machine learning and artificial intelligence technologies to develop intelligent diagnostic tools will accelerate the clinical adoption of EEG biomarkers in DOC diagnosis and prognosis, allowing for more precise evaluations of consciousness states and personalized treatment strategies.
2.A Case Report of Pachydermoperiostosis by Multidisciplinary Diagnosis and Treatment
Jie ZHANG ; Yan ZHANG ; Li HUO ; Ke LYU ; Tao WANG ; Ze'nan XIA ; Xiao LONG ; Kexin XU ; Nan WU ; Bo YANG ; Weibo XIA ; Rongrong HU ; Limeng CHEN ; Ji LI ; Xia HONG ; Yan ZHANG ; Yagang ZUO
JOURNAL OF RARE DISEASES 2025;4(1):75-82
A 20-year-old male patient presented to the Department of Dermatology of Peking Union Medical College Hospital with complaints of an 8-year history of facial scarring, swelling of the lower limbs, and a 4-year history of scalp thickening. Physical examination showed thickening furrowing wrinkling of the skin on the face and behind the ears, ciliary body hirsutism, blepharoptosis, and cutis verticis gyrate. Both lower limbs were swollen, especially the knees and ankles. The skin of the palms and soles of the feet was keratinized and thickened. Laboratory examination using bone and joint X-ray showed periostosis of the proximal middle phalanges and metacarpals of both hands, distal ulna and radius, tibia and fibula, distal femurs, and metatarsals.Genetic testing revealed two variants in
3.Characteristics of Traditional Chinese Medicine Syndromes in Patients with Concurrent Postmenopausal Osteoporosis and Knee Osteoarthritis
Xin CUI ; Huaiwei GAO ; Long LIANG ; Ming CHEN ; Shangquan WANG ; Ting CHENG ; Yili ZHANG ; Xu WEI ; Yanming XIE
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):257-265
ObjectiveTo explore the characteristics of traditional Chinese medicine (TCM) syndromes in the patients with concurrent knee osteoarthritis (KOA) and postmenopausal osteoporosis (PMOP) and provide a scientific basis for precise TCM syndrome differentiation, diagnosis, and treatment of such concurrent diseases. MethodsA prospective, multicenter, cross-sectional clinical survey was conducted to analyze the characteristics of TCM syndromes in the patients with concurrent PMOP and KOA. Excel 2021 was used to statistically analyze the general characteristics of the included patients. Continuous variables were reported as
4.Characteristics of Traditional Chinese Medicine Syndromes in Patients with Concurrent Postmenopausal Osteoporosis and Knee Osteoarthritis
Xin CUI ; Huaiwei GAO ; Long LIANG ; Ming CHEN ; Shangquan WANG ; Ting CHENG ; Yili ZHANG ; Xu WEI ; Yanming XIE
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):257-265
ObjectiveTo explore the characteristics of traditional Chinese medicine (TCM) syndromes in the patients with concurrent knee osteoarthritis (KOA) and postmenopausal osteoporosis (PMOP) and provide a scientific basis for precise TCM syndrome differentiation, diagnosis, and treatment of such concurrent diseases. MethodsA prospective, multicenter, cross-sectional clinical survey was conducted to analyze the characteristics of TCM syndromes in the patients with concurrent PMOP and KOA. Excel 2021 was used to statistically analyze the general characteristics of the included patients. Continuous variables were reported as
5.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
6.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
7.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
8.Investigation of an outbreak of group A human G9P [8] rotavirus infectious diarrhea among adults in Chongqing
Yang WANG ; Yuan KONG ; Ning CHEN ; Lundi YANG ; Jiang LONG ; Qin LI ; Xiaoyang XU ; Wei ZHENG ; Hong WEI ; Jie LU ; Quanjie XIAO ; Yingying BA ; Wenxi WU ; Qian XU ; Ju YAN
Shanghai Journal of Preventive Medicine 2025;37(8):663-668
ObjectiveTo investigate and analyze an outbreak of rotavirus infectious diarrhea in a prison in Chongqing Municipality, to provide a basis for adult rotavirus surveillance and prevention, and to explore the public health problems in special settings. MethodsA retrospective survey was conducted to collect and analyze data on individual cases with diarrheal disease on-site. The clinical characteristics, as well as the temporal, spatial and geographical distribution patterns of the epidemic were described. Multi-pathogen detection tests were conducted both on diarrhea cases and environmental samples, with viral genotyping performed on positive samples. A case-control analysis was performed to identify the causes of the outbreak, and an SEIR model was adopted to predict the outbreak trend and evaluate the effectiveness of interventions. ResultsA total of 65 cases were found among the inmates, with an attack rate of 2.03%. The predominant clinical manifestations included diarrhea (89.23%), watery stool (73.85%), and dehydration (18.46%). The epidemic curve indicated a “human-to-human” transmission pattern, with an average incubation period of 5‒6 days. The attack rates among chefs in the main canteen (80.00%, 8/10) and caterers (28.33%, 17/60) were significantly higher than those of other inmates (P<0.05). Multi-pathogen polymerase chain reaction (PCR) testing detected positive for group A rotavirus, with the viral genotyping identified as G9P [8] strain. Factors such as unprotected "bare-handed" food distribution among cases with diarrhea (OR=9.512, 95%CI: 4.261‒21.234) and close contact with diarrhea cases (OR=3.656, 95%CI: 1.719‒7.778) were the possible cause of the outbreak. The SEIR model (r0=5, α=0.3, β1=0.08, β2=0.04) was constructed using prison inmates as susceptible population, aiming at fitting the initial transmission trend of the outbreak, and the epidemic rate declined rapidly after intervention measures were implemented (rt≈0). ConclusionThis rare rotavirus infection diarrhea outbreak among adults in confined settings suggests that the construction of public health prevention and control systems in prison may be overlooked. Cross infection during meal processing and distribution in the canteens of such settings is likely to be the cause of the outbreak. Given the potential neglect of public heath system construction in special settings, it is imperative to enhance the surveillance and monitoring of rotavirus and other intestinal multi-pathogens among adults, as well as the construction of public health prevention and control systems in these special settings.
9.Protective Effects of Danmu Extract Syrup on Acute Lung Injury Induced by Lipopolysaccharide in Mice through Endothelial Barrier Repair.
Han XU ; Si-Cong XU ; Li-Yan LI ; Yu-Huang WU ; Yin-Feng TAN ; Long CHEN ; Pei LIU ; Chang-Fu LIANG ; Xiao-Ning HE ; Yong-Hui LI
Chinese journal of integrative medicine 2024;30(3):243-250
OBJECTIVE:
To investigate the effects of Danmu Extract Syrup (DMS) on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice and explore the mechanism.
METHODS:
Seventy-two male Balb/C mice were randomly divided into 6 groups according to a random number table (n=12), including control (normal saline), LPS (5 mg/kg), LPS+DMS 2.5 mL/kg, LPS+DMS 5 mL/kg, LPS+DMS 10 mL/kg, and LPS+Dexamethasone (DXM, 5 mg/kg) groups. After pretreatment with DMS and DXM, the ALI mice model was induced by LPS, and the bronchoalveolar lavage fluid (BALF) were collected to determine protein concentration, cell counts and inflammatory cytokines. The lung tissues of mice were stained with hematoxylin-eosin, and the wet/dry weight ratio (W/D) of lung tissue was calculated. The levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-6 and IL-1 β in BALF of mice were detected by enzyme linked immunosorbent assay. The expression levels of Claudin-5, vascular endothelial (VE)-cadherin, vascular endothelial growth factor (VEGF), phospho-protein kinase B (p-Akt) and Akt were detected by Western blot analysis.
RESULTS:
DMS pre-treatment significantly ameliorated lung histopathological changes. Compared with the LPS group, the W/D ratio and protein contents in BALF were obviously reduced after DMS pretreatment (P<0.05 or P<0.01). The number of cells in BALF and myeloperoxidase (MPO) activity decreased significantly after DMS pretreatment (P<0.05 or P<0.01). DMS pre-treatment decreased the levels of TNF-α, IL-6 and IL-1 β (P<0.01). Meanwhile, DMS activated the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) pathway and reversed the expressions of Claudin-5, VE-cadherin and VEGF (P<0.01).
CONCLUSIONS
DMS attenuated LPS-induced ALI in mice through repairing endothelial barrier. It might be a potential therapeutic drug for LPS-induced lung injury.
Mice
;
Male
;
Animals
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Lipopolysaccharides
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Interleukin-1beta/metabolism*
;
Vascular Endothelial Growth Factor A/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Claudin-5/metabolism*
;
Acute Lung Injury/chemically induced*
;
Lung/pathology*
;
Interleukin-6/metabolism*
;
Drugs, Chinese Herbal
10.Construction of small intestinal organoid model in insulin-resistant mice and protective effect of flavanomarein on intestinal mucosal barrier in this model
MAIMAITI YIMINIGULI ; DUOLIKUN MAIMAITIYASEN ; BIEKEDAWULAITI GULINAZI ; ABULAIZI REZIYA ; Long CHEN ; Mengzhu ZHENG ; Zhanqun YANG ; Ziheng CAI ; Nuo XU ; Linlin LI
Chinese Journal of Pharmacology and Toxicology 2024;38(2):105-112
OBJECTIVE To construct an insulin-resistant(IR)small intestinal organoid model of mice and study the protective effect of flavanomarein(FM)on the intestinal mucosal barrier in the model.METHODS ①Small intestinal organoid models of C57BL/6J and db/db of mice were constructed.The expressions of Ki-67,E-cadherin(E-cad),lysozyme(Lyz)and mucin-2(Muc-2)in small intestinal organ-oids were detected by 3D immunofluorescence.RT-qPCR was used to detect the expressions of fibro-nectin(Fn),glucagon-like peptide-1(GLP-1)and peotide YY(PYY)mRNA while Western blotting was used to detect the expressions of Fn,GLP-1 and PYY protein.The Lyz secretion level was detected by ELISA.② Small intestinal organoids were divided into five groups:C57BL/6J mice 'small intestinal organ-oids as the normal control group,db/db mice' intestinal organoids as the IR model group,db/db mice small intestinal organoids with flavanomarein 25,50 and 100 μmol·L-1 intervention for 48 h as IR model+ FM groups.RT-qPCR was used to detect the expression of Lyz mRNA while Western blotting was used to detect the expression of Lyz protein.RESULTS ① On the 6th day of small intestinal organoid culture,a ring structure with a clear luminal structure was formed and an IR mouse small intestinal organoid model was established.3D Immunofluorescence detection showed that the established small intestinal organoids all expressed Ki-67,E-cad,Lyz and MUC-2.Compared with the normal control group,the expres-sion of Fn mRNA in the IR model group was significantly increased(P<0.05)while the expressions of GLP-1 and PYY mRNA were significantly decreased(P<0.05).Compared with the normal control group,the expression of Fn protein in the IR model group was significantly decreased(P<0.05)while the expressions of GLP-1 and PYY protein were significantly increased(P<0.05).ELISA results showed that compared with the normal control group,the secretion levels of Lyz in the IR model group were signifi-cantly decreased(P<0.01).② RT-qPCR results showed that compared with the normal control group,the expression of Lyz mRNA in the IR model group was significantly decreased(P<0.01).Compared with the IR model group,the expression of Lyz mRNA in the IR model+FM 50 and 100 μmol·L-1 groups was significantly increased(P<0.05,P<0.01).Western blotting results showed that compared with the normal control group,the expression of Lyz protein in the IR model group was significantly decreased(P<0.01).Compared with the IR model group,the expression of Lyz protein in the IR model+FM 50 and 100 μmol·L-1 groups was significantly increased(P<0.05,P<0.01).CONCLUSION The constructed IR mouse small intestinal organoid model provides a more complete in vitro research model for exploring the pathophysiological mechanism by which drug interventions help repair the intestinal mucosal barrier.FM may maintain the intestinal mucosal barrier by reversing the decrease in Lyz expression levels in IR mice,thereby improving IR.

Result Analysis
Print
Save
E-mail