1.Epidemiological investigation of a maternal Listeria monocytogenes ST2 infection case
XU Wei ; LIN Yun ; ZHU Guoying ; SONG Hejia ; JIA Juanjuan ; SUN Yangming
Journal of Preventive Medicine 2025;37(2):189-191
Abstract
On September 26, 2024, a municipal hospital in Jiaxing City reported a maternal case of Listeria monocytogenes infection. In order to clarify the source of infection, the Jiaxing Center for Disease Control and Prevention immediately conducted the epidemiological investigation, laboratory testing and related disposal work. The case presented with fever (37.9 ℃), gradually intensifying paroxysmal abdominal pain without obvious cause, and went to hospital on the day of onset. Due to fetal intrauterine distress, a male infant was delivered by cesarean section on the same day. The epidemiological investigation identified that the case usually consumed fruits, often store fruits such as watermelon and grapes in the refrigerator alongside raw meat, and the refrigerator had never been cleaned or disinfected, posing a risk of cross contamination. Laboratory tests on amniotic fluid sample from the pregnant woman, infant blood sample showed positive results for Listeria monocytogenes infection. One strain of Listeria monocytogenes was detected in a smear sample from the inner wall of the refrigerator, and all the strains were ST2 type. Consuming fruits contaminated with Listeria monocytogenes may be the main source of infection. Food safety education for pregnant women and their family members should be strengthened to reduce the risk of infection.
2.Construction and effectiveness evaluation of a closed-loop management system for dispensed oral drugs in the inpatient pharmacy based on SWOT analysis
Jia WANG ; Weihong GE ; Ruijuan XU ; Shanshan QIAN ; Xuemin SONG ; Xiangling SHENG ; Bin WU ; Li LI
China Pharmacy 2025;36(4):401-406
OBJECTIVE To improve the efficiency and quality of dispensed oral drug management in the inpatient pharmacy, and ensure the safety of drug use in patients. METHODS SWOT (strength, weakness, opportunity, threat) analysis method was used to analyze the internal strengths and weaknesses, as well as the external opportunities and threats in the construction of a closed-loop management system for dispensed oral drugs in the inpatient pharmacy of our hospital, and propose improvement strategies. RESULTS & CONCLUSIONS A refined, full-process, closed-loop traceability management system for dispensed oral drugs in the inpatient pharmacies was successfully established, which is traceable in origin, trackable in destination, and accountable in responsibility. After the application of this system, the registration rate of dispensed drug information and the correctness rate of registration content both reached 100%. The proportion of overdue drug varieties in the same period of 2024 decreased by 77.78% compared to March 2020, the inventory volume decreased by 29.50% compared to the first quarter of 2020, the per-bed medication volume decreased by 32.14% compared to the first quarter of 2020; the average workload per post in the same period of 2023 increased by 49.09% compared to 2019, the dispensing accuracy rate reached 100%, and the improvement rate of quality control problem increased by 25.25% compared to 2021. This system effectively improves the safety and accuracy of dispensed oral drug management in the inpatient pharmacy.
3.Urban-rural difference in adverse outcomes of pulmonary tuberculosis in patients with pulmonary tuberculosis-diabetes mellitus comorbidity
FANG Zijian ; LI Qingchun ; XIE Li ; SONG Xu ; DAI Ruoqi ; WU Yifei ; JIA Qingjun ; CHENG Qinglin
Journal of Preventive Medicine 2025;37(1):7-11
Objective:
To investigate the urban and rural differences in adverse outcomes of pulmonary tuberculosis (PTB) in patients with pulmonary tuberculosis-diabetes mellitus comorbidity (PTB-DM), so as to provide insights into improving the prevention and treatment measures for PTB-DM.
Methods:
Patients with PTB-DM who were admitted and discharged from 14 designated tuberculosis hospitals in Hangzhou City from 2018 to 2022 were selected. Basic information, and history of diagnosis and treatment were collected through hospital information systems. The adverse outcomes of PTB were defined as endpoints, and the proportions of adverse outcomes of PTB in urban and rural patients with PTB-DM were analyzed. Factors affecting the adverse outcomes of PTB were identified using a multivariable Cox proportional hazards regression model.
Results:
A total of 823 patients with PTB-DM were enrolled, including 354 (43.01%) urban and 469 (56.99%) rural patients. There were 112 (13.61%) patients with adverse outcomes of PTB. The proportions of adverse outcomes of PTB in urban and rural patients were 14.41% and 13.01%, respectively, with no statistically significant difference (P>0.05). Multivariable Cox proportional hazards regression analysis identified first diagnosed in county-level hospitals or above (HR=2.107, 95%CI: 1.181-3.758) and drug resistance (HR=3.303, 95%CI: 1.653-6.600) as the risk factors for adverse outcomes of PTB in urban patients with PTB-DM, while the treatment/observed management throughout the process (HR=0.470, 95%CI: 0.274-0.803) and fixed-dose combinations throughout the process (HR=0.331, 95%CI: 0.151-0.729) as the protective factors for adverse outcomes in rural patients with PTB-DM.
Conclusions
There are differences in influencing factors for adverse outcomes of PTB in urban and rural patients with PTB-DM. The adverse outcomes of PTB are associated with first diagnosed hospitals and drug resistance in urban patients, and are associated with the treatment/observed management and fixed-dose combinations throughout the process in rural patients.
4.Progress on antisense oligonucleotide in the field of antibacterial therapy
Jia LI ; Xiao-lu HAN ; Shi-yu SONG ; Jin-tao LIN ; Zhi-qiang TANG ; Zeng-ming WANG ; Liang XU ; Ai-ping ZHENG
Acta Pharmaceutica Sinica 2025;60(2):337-347
With the widespread use of antibiotics, drug-resistant bacterial infections have become a significant threat to human health. Finding new antibacterial strategies that can effectively control drug-resistant bacterial infections has become an urgent task. Unlike small molecule drugs that target bacterial proteins, antisense oligonucleotide (ASO) can target genes related to bacterial resistance, pathogenesis, growth, reproduction and biofilm formation. By regulating the expression of these genes, ASO can inhibit or kill bacteria, providing a novel approach for the development of antibacterial drugs. To overcome the challenge of delivering antisense oligonucleotide into bacterial cells, various drug delivery systems have been applied in this field, including cell-penetrating peptides, lipid nanoparticles and inorganic nanoparticles, which have injected new momentum into the development of antisense oligonucleotide in the antibacterial realm. This review summarizes the current development of small nucleic acid drugs, the antibacterial mechanisms, targets, sequences and delivery vectors of antisense oligonucleotide, providing a reference for the research and development of antisense oligonucleotide in the treatment of bacterial infections.
5.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
6.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
7.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
8.Exploring Regulatory Effect of Kaixuan Jiedu Core Prescription on SPHK2/S1P/MCP-1 Pathway in Psoriasis-like Mouse Model Based on Sphingolipid Metabolism
Yeping QIN ; Wenhui LIU ; Dan DAI ; Jia XU ; Chong LI ; Bin YANG ; Ping SONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):60-68
ObjectiveTo explore the effects of Kaixuan Jiedu core prescription (KXJD) on sphingolipid metabolism in the mouse model of imiquimod-induced psoriasis-like skin lesions. MethodsThirty-seven male C57BL/6J mice were randomly assigned into five groups: healthy control (n=11), model (n=11), methotrexate (MTX, n=5), low-dose (15.21 g·kg-1) KXJD (n=5), and high-dose (30.42 g·kg-1) KXJD (n=5). Psoriasis-like skin lesions were induced in mice with 62.5 mg 5% imiquimod cream applied on the back. The KXJD groups and MTX group were treated with 0.2 mL corresponding decoction and MTX, respectively, by gavage daily, while the other groups were given an equal volume of normal saline by the same way. After 5 days of treatment, back skin lesions were collected. Firstly, healthy control and model mice were selected for tandem mass tag (TMT) quantitative proteomics (control vs model=3 vs 3) and targeted lipid metabolomics (control vs model=11 vs 11). Then, the binding degree between core components and target proteins was predicted via network pharmacology and molecular docking. Finally, an animal experiment was performed to decipher the specific regulation mechanism of KXJD on sphingolipid metabolism. Immunohistochemistry was employed to determine the expression level of sphingosine-1-phosphate (S1P), and Western blot was employed to determine the expression levels of sphingosine kinase 2 (SPHK2) and monocyte chemotactic protein-1 (MCP-1). ResultsTMT proteomics and targeted lipid metabolomics suggested that sphingolipid metabolism was active in the psoriatic skin, and key proteases [serine palmitoyltransferase, long chain base subunit 2 (SPTLC2), SPHK2, delta(4)-desaturase sphingolipid 1 (Degs1), and ceramide synthase 4 (CerS4)] and 8 sphingolipid metabolites (including ceramides, sphingol, sphingomyelin, and glycosphingolipid) expressed abnormally (P<0.05) compared with those in the healthy skin. The molecular docking results indicated that the binding energy between the active components (quercetin, kaempferol, and luteolin) in KXJD and key proteins involved in sphingolipid metabolism was less than-8 kal·mol-1. Further experimental verification showed elevated expression levels of SPHK2, S1P, and MCP-1 in psoriatic skin compared with healthy skin (P<0.05), and KXJD down-regulated the expression levels of SPHK2, S1P, and MCP-1 compared with the model group (P<0.05). ConclusionThis study indicates that there is an imbalance in sphingolipid metabolism in psoriatic skin lesions. KXJD may reduce psoriasis-like lesions in mice by regulating sphingolipid metabolism via the SPHK2/S1P/MCP-1 pathway.
9.Exploring Regulatory Effect of Kaixuan Jiedu Core Prescription on SPHK2/S1P/MCP-1 Pathway in Psoriasis-like Mouse Model Based on Sphingolipid Metabolism
Yeping QIN ; Wenhui LIU ; Dan DAI ; Jia XU ; Chong LI ; Bin YANG ; Ping SONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):60-68
ObjectiveTo explore the effects of Kaixuan Jiedu core prescription (KXJD) on sphingolipid metabolism in the mouse model of imiquimod-induced psoriasis-like skin lesions. MethodsThirty-seven male C57BL/6J mice were randomly assigned into five groups: healthy control (n=11), model (n=11), methotrexate (MTX, n=5), low-dose (15.21 g·kg-1) KXJD (n=5), and high-dose (30.42 g·kg-1) KXJD (n=5). Psoriasis-like skin lesions were induced in mice with 62.5 mg 5% imiquimod cream applied on the back. The KXJD groups and MTX group were treated with 0.2 mL corresponding decoction and MTX, respectively, by gavage daily, while the other groups were given an equal volume of normal saline by the same way. After 5 days of treatment, back skin lesions were collected. Firstly, healthy control and model mice were selected for tandem mass tag (TMT) quantitative proteomics (control vs model=3 vs 3) and targeted lipid metabolomics (control vs model=11 vs 11). Then, the binding degree between core components and target proteins was predicted via network pharmacology and molecular docking. Finally, an animal experiment was performed to decipher the specific regulation mechanism of KXJD on sphingolipid metabolism. Immunohistochemistry was employed to determine the expression level of sphingosine-1-phosphate (S1P), and Western blot was employed to determine the expression levels of sphingosine kinase 2 (SPHK2) and monocyte chemotactic protein-1 (MCP-1). ResultsTMT proteomics and targeted lipid metabolomics suggested that sphingolipid metabolism was active in the psoriatic skin, and key proteases [serine palmitoyltransferase, long chain base subunit 2 (SPTLC2), SPHK2, delta(4)-desaturase sphingolipid 1 (Degs1), and ceramide synthase 4 (CerS4)] and 8 sphingolipid metabolites (including ceramides, sphingol, sphingomyelin, and glycosphingolipid) expressed abnormally (P<0.05) compared with those in the healthy skin. The molecular docking results indicated that the binding energy between the active components (quercetin, kaempferol, and luteolin) in KXJD and key proteins involved in sphingolipid metabolism was less than-8 kal·mol-1. Further experimental verification showed elevated expression levels of SPHK2, S1P, and MCP-1 in psoriatic skin compared with healthy skin (P<0.05), and KXJD down-regulated the expression levels of SPHK2, S1P, and MCP-1 compared with the model group (P<0.05). ConclusionThis study indicates that there is an imbalance in sphingolipid metabolism in psoriatic skin lesions. KXJD may reduce psoriasis-like lesions in mice by regulating sphingolipid metabolism via the SPHK2/S1P/MCP-1 pathway.
10.In vitro study of immunocompatibility of humanized genetically modified pig erythrocytes with human serum
Leijia CHEN ; Mengyi CUI ; Xiangyu SONG ; Kai WANG ; Zhibo JIA ; Liupu YANG ; Yanghui DONG ; Haochen ZUO ; Jiaxiang DU ; Dengke PAN ; Wenjing XU ; Hongbo REN ; Yaqun ZHAO ; Jiang PENG
Organ Transplantation 2024;15(3):415-421
Objective To investigate the differences and the immunocompatibility of wild-type (WT), four-gene modified (TKO/hCD55) and six-gene modified (TKO/hCD55/hCD46/hTBM) pig erythrocytes with human serum. Methods The blood samples were collected from 20 volunteers with different blood groups. WT, TKO/hCD55, TKO/hCD55/hCD46/hTBM pig erythrocytes, ABO-compatible (ABO-C) and ABO-incompatible (ABO-I) human erythrocytes were exposed to human serum of different blood groups, respectively. The blood agglutination and antigen-antibody binding levels (IgG, IgM) and complement-dependent cytotoxicity were detected. The immunocompatibility of two types of genetically modified pig erythrocytes with human serum was evaluated. Results No significant blood agglutination was observed in the ABO-C group. The blood agglutination levels in the WT and ABO-I groups were higher than those in the TKO/hCD55 and TKO/hCD55/hCD46/hTBM groups (all P<0.001). The level of erythrocyte lysis in the WT group was higher than those in the ABO-C, TKO/hCD55 and TKO/hCD55/hCD46/hTBM groups. The level of erythrocyte lysis in the ABO-I group was higher than those in the TKO/hCD55 and TKO/hCD55/hCD46/hTBM groups (both P<0.01). The pig erythrocyte binding level with IgM and IgG in the TKO/hCD55 group was lower than those in the WT and ABO-I groups. The pig erythrocyte binding level with IgG and IgM in the TKO/hCD55/hCD46/hTBM group was lower than that in the WT group and pig erythrocyte binding level with IgG was lower than that in the ABO-I group (all P<0.05). Conclusions The immunocompatibility of genetically modified pig erythrocytes is better than that of wild-type pigs and close to that of ABO-C pigs. Humanized pig erythrocytes may be considered as a blood source when blood sources are extremely scarce.


Result Analysis
Print
Save
E-mail