1.Effects of medicated serum of Siwutang on autophagy of ovarian granulosa cells in polycystic ovarian syndrome
Yanshe SHAO ; Xuemei XU ; Baoqin YANG ; Huijuan LI ; Xia JI
China Pharmacy 2025;36(2):185-190
OBJECTIVE To investigate the effects of medicated serum of Siwutang on autophagy of ovarian granulosa cells (KGN cells) in polycystic ovarian syndrome (PCOS) and its underlying mechanism. METHODS Blank serum and different- concentration medicated serum of Siwutang were prepared by intragastric administration of normal saline and different doses of Siwutang [0.52, 1.04, 2.08 g/(kg·d)] in 3-month-old female SD rats. After screening the intervention concentration of Siwutang medicated serum, KGN cells were divided into control group (without any treatment), dehydroepiandrosterone (DHEA) group (treated with 50 μmol/L DHEA for 48 h), blank serum group (treated with 50 μmol/L DHEA for 48 h and with 10% blank serum for 72 h) and medium-concentration of Siwutang medicated serum group (treated with 50 μmol/L DHEA for 48 h and with 10% medium-concentration Siwutang medicated serum for 72 h). The number of autophagosomes was observed in each group, and protein expressions of pathway-related proteins [fructose-1, 6-bisphosphatase 1 (FBP1),mammalian target of rapamycin (mTOR), phosphorylated mTOR (p-mTOR)], autophagy-related proteins [p62, microtubule-associated protein 1 light chain 3 (LC3)] and mRNA expression of FBP1 were also detected. The (transfected) cells were further divided into Siwutang group (treated with 10% medium dose of Siwutang medicated serum for 72 h after 48 h intervention with 50 μmol/L DHEA), Siwutang+si-NC group [negative control small interfering RNA (siRNA) transfected cells treated with 50 μmol/L DHEA for 48 h, and then with 10% medium-concentration of Siwutang medicated serum for 72 h] and Siwutang+si-FBP1 group (FBP1 siRNA transfected cells treated with 50 μmol/L DHEA for 48 h, and then with 10% medium-concentration Siwutang medicated serum for 72 h). The effects of knocking down FBP1 on the above-mentioned effects of Siwutang were detected. RESULTS Compared with control group, DHEA group exhibited an increase in the number of autophagosomes, an elevated LC3-Ⅱ/LC3-Ⅰ and p-mTOR/mTOR, as well as increases in protein and mRNA expressions of FBP1, and decreased protein expression of p62 (P<0.05). Compared to both DHEA group and blank serum group, the medium-concentration of Siwutang medicated serum group showed a decrease in the number of autophagosomes, a decrease in LC3-Ⅱ/LC3-Ⅰ, and increases in p-mTOR/mTOR, protein expression of p62, protein and mRNA expressions of FBP1 (P<0.05). After knocking down FBP1, compared with Siwutang+si-NC group, Siwutang+si-FBP1 group showed a significant decrease in cell viability, protein expression of p62 , protein and mRNA expressions of FBP1 as well as p-mTOR/mTOR, and an increase in LC3-Ⅱ/LC3-Ⅰ (P<0.05). CONCLUSIONS Siwutang can promote the phosphorylation of mTOR protein by up- regulating the protein and mRNA expressions of FBP1 in KGN cells, thus inhibiting autophagy of KGN cells.
2.Effects of medicated serum of Siwutang on autophagy of ovarian granulosa cells in polycystic ovarian syndrome
Yanshe SHAO ; Xuemei XU ; Baoqin YANG ; Huijuan LI ; Xia JI
China Pharmacy 2025;36(2):185-190
OBJECTIVE To investigate the effects of medicated serum of Siwutang on autophagy of ovarian granulosa cells (KGN cells) in polycystic ovarian syndrome (PCOS) and its underlying mechanism. METHODS Blank serum and different- concentration medicated serum of Siwutang were prepared by intragastric administration of normal saline and different doses of Siwutang [0.52, 1.04, 2.08 g/(kg·d)] in 3-month-old female SD rats. After screening the intervention concentration of Siwutang medicated serum, KGN cells were divided into control group (without any treatment), dehydroepiandrosterone (DHEA) group (treated with 50 μmol/L DHEA for 48 h), blank serum group (treated with 50 μmol/L DHEA for 48 h and with 10% blank serum for 72 h) and medium-concentration of Siwutang medicated serum group (treated with 50 μmol/L DHEA for 48 h and with 10% medium-concentration Siwutang medicated serum for 72 h). The number of autophagosomes was observed in each group, and protein expressions of pathway-related proteins [fructose-1, 6-bisphosphatase 1 (FBP1),mammalian target of rapamycin (mTOR), phosphorylated mTOR (p-mTOR)], autophagy-related proteins [p62, microtubule-associated protein 1 light chain 3 (LC3)] and mRNA expression of FBP1 were also detected. The (transfected) cells were further divided into Siwutang group (treated with 10% medium dose of Siwutang medicated serum for 72 h after 48 h intervention with 50 μmol/L DHEA), Siwutang+si-NC group [negative control small interfering RNA (siRNA) transfected cells treated with 50 μmol/L DHEA for 48 h, and then with 10% medium-concentration of Siwutang medicated serum for 72 h] and Siwutang+si-FBP1 group (FBP1 siRNA transfected cells treated with 50 μmol/L DHEA for 48 h, and then with 10% medium-concentration Siwutang medicated serum for 72 h). The effects of knocking down FBP1 on the above-mentioned effects of Siwutang were detected. RESULTS Compared with control group, DHEA group exhibited an increase in the number of autophagosomes, an elevated LC3-Ⅱ/LC3-Ⅰ and p-mTOR/mTOR, as well as increases in protein and mRNA expressions of FBP1, and decreased protein expression of p62 (P<0.05). Compared to both DHEA group and blank serum group, the medium-concentration of Siwutang medicated serum group showed a decrease in the number of autophagosomes, a decrease in LC3-Ⅱ/LC3-Ⅰ, and increases in p-mTOR/mTOR, protein expression of p62, protein and mRNA expressions of FBP1 (P<0.05). After knocking down FBP1, compared with Siwutang+si-NC group, Siwutang+si-FBP1 group showed a significant decrease in cell viability, protein expression of p62 , protein and mRNA expressions of FBP1 as well as p-mTOR/mTOR, and an increase in LC3-Ⅱ/LC3-Ⅰ (P<0.05). CONCLUSIONS Siwutang can promote the phosphorylation of mTOR protein by up- regulating the protein and mRNA expressions of FBP1 in KGN cells, thus inhibiting autophagy of KGN cells.
3.Effects of two intermittent fasting strategies on postprandial lipid metabolism in adults
Manman SHAO ; Xiaohui WEI ; Yuanchao LI ; Mingjing XU ; Tao YING ; Gengsheng HE ; Yuwei LIU
Shanghai Journal of Preventive Medicine 2025;37(1):64-71
ObjectiveTo investigate the effects and potential mechanisms of morning and evening fasting on postprandial lipid responses, a post hoc analysis based on a crossover randomized controlled trial was conducted to assess the effects of different fasting strategies on postprandial lipid metabolism in community residents in Shanghai. MethodsA total of 23 participants took part in a randomized crossover trial involving two intervention days: morning fasting and evening fasting, with a washout period of 6 days between intervention days. Two-way analysis of variance was used to test the differences in total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and the relative expression of circadian clock genes before and after the next meal under fasting. Wilcoxon rank sum tests were used to analyze the different metabolites between the two groups. Principal component analysis and Orthogonal partial least squares-discriminant analysis were conducted to evaluate the ability of metabolites to differentiate between morning fasting and evening fasting and identify the important differential metabolites. After adjusting for age, sex, and BMI, a partial correlation analysis was performed to identify metabolites associated with plasma lipids. In addition, important metabolites associated with plasma lipids were computed by pathway enrichment analysis. ResultsAfter evening fasting intervention, fasting TG level [(0.37±0.29) vs (0.27±0.18)] mmol·L-1, fasting and postprandial change values in TC [(2.74±0.47) vs (2.51±0.27)] mmol·L-1 and LDL-C [(1.32±0.38) vs (0.99±0.27)] mmol·L-1 were significantly lower than those after morning fasting (P<0.05). While, change values of fasting LDL-C [(0.89±0.37) vs (1.14±0.37)] mmol·L-1 and TG [(1.14±0.19) vs (1.28±0.17)] mmol·L-1 were significantly higher than those after morning fasting intervention (P<0.05). After fasting intervention, the relative expression of AMPK, CRY1, CLOCK, MTNR1B, AANAT, and ASMT was correlated with the amount of plasma lipid changes (P<0.05). Specifically, CLOCK and AANAT were upregulated following evening fasting and downregulated after morning fasting. Among the 217 important differential metabolites, 111 were correlated with plasma lipids, and which were primarily enriched in the cysteine and methionine metabolism pathways (P<0.05). ConclusionCompared to morning fasting, evening fasting was more effective in improving postprandial lipid responses, indicating that an evening fasting window during intermittent fasting could be conducive to cardiovascular disease prevention in adults. Meanwhile, it is suggested that morning and evening fasting may affect lipid responses through circadian rhythm oscillations and the cysteine and methionine metabolism pathways.
4.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
5.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
6.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
7.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
8.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
9.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
10.Management of Cutaneous Immune-Related Adverse Events of Malignant Tumors Induced by Immune Checkpoint Inhibitors Based on Theory of "Fire and Original Qi are Restricted"
Shiliang SHAO ; Lijing JIAO ; Yichao WANG ; Decai WANG ; Qishan HUA ; Yabin GONG ; Ling XU
Journal of Traditional Chinese Medicine 2025;66(16):1656-1661
Guided by the theory of "fire and original qi are restricted", it is believed that original qi depletion is the root of the cutaneous immune-related adverse events (cirAEs) related to immune checkpoint inhibitors (ICIs), and the yin fire exuberance is the branch. Among them, original qi depletion is the internal foundation of the disease, while the drug toxicity of ICIs harming original qi is the initiating factor, and exuberant yin fire is the key pathogenesis. In clinical practice, the general treatment principle advocates banking up original qi to consolidate the root and draining fire to raise yang. Buzhong Yiqi Decoction (补中益气汤) can be used to activate transportation of middle jiao (焦) and promote ascent and dispersion of clear yang, thereby restoring the balance of qi and fire, and medicinals such as Huangqin (Radix Scutellariae), Huanglian (Rhizoma Coptidis) and Huangbai (Cortex Phellodendri Chinensis) can be supplementetd to clear and drain yin fire. At the same time, considering the accompanying symptoms such as dampness-stasis and fluids depletion, the methods of removing dampness and dispelling stasis, supplementing blood and nourishing yin should be added flexibly. This approach can provide a new perspective and treatment strategy for reducing ICIs-related cirAEs in malignant tumors.

Result Analysis
Print
Save
E-mail