1.Mechanism of Traditional Chinese Medicine in Treating Steroid-Induced Osteonecrosis of Femoral Head via Regulating PI3K/Akt Pathway: A Review
Yaqi ZHANG ; Bo LI ; Jiancheng TANG ; Ran DING ; Cheng HUANG ; Yaping XU ; Qidong ZHANG ; Weiguo WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(5):141-149
Steroid-induced osteonecrosis of the femoral head (SONFH) is a severe musculoskeletal disorder often induced by the prolonged or excessive use of glucocorticoids. Characterized by ischemia of bone cells, necrosis, and trabecular fractures, SONFH is accompanied by pain, femoral head collapse, and joint dysfunction, which can lead to disability in severe cases. The pathogenesis of SONFH involves hormone-induced osteoblast apoptosis, bone microvascular endothelial cell (BMEC) apoptosis, oxidative stress, and inflammatory responses. The phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway plays a pivotal role in the development of the disease. Modulating the PI3K/Akt signaling pathway can promote Akt phosphorylation, thereby stimulating the osteogenic differentiation of bone marrow mesenchymal stem cells and osteoblasts, promoting angiogenesis in BMECs, and inhibiting osteoclastogenesis. The research on the treatment of SONFH with traditional Chinese medicine (TCM) has gained increasing attention. Recent studies have shown that TCM monomers and compounds have potential therapeutic effect on SONFH by intervening in the PI3K/Akt signaling pathway. These studies not only provide a scientific basis for the application of TCM in the treatment of SONFH but also offer new ideas for the development of new therapeutic strategies. This review summarized the progress in Chinese and international research on the PI3K/Akt signaling pathway in SONFH over the past five years. It involved the composition and transmission mechanisms of the signaling pathway, as well as its regulatory effects on osteoblasts, mesenchymal stem cells, osteoclasts, BMECs, and other cells. Additionally, the review explored the TCM understanding of SONFH and the application of TCM monomers and compounds in the intervention of the PI3K/Akt pathway. By systematically analyzing and organizing these research findings, this article aimed to provide references and point out directions for the clinical prevention and treatment of SONFH and promote further development of TCM in this field. With in-depth research on the PI3K/Akt pathway and the modern application of TCM, it is expected to bring safer and more effective treatment options for patients with SONFH.
2.Overview of the amendments and revisions to the General Technical Requirements adopted by the Volume Ⅳ of the Chinese Pharmacopoeia 2025 Edition
ZHANG Jun ; NING Baoming ; WEI Shifeng ; SHEN Haoyu ; SHANG Yue ; ZHU Ran ; XU Xinyi ; CHEN Lei ; LIU Tingting ; MA Shuangcheng
Drug Standards of China 2025;26(1):034-044
To introduce the general thinking, guidelines, work objectives and elaboration process of the general technical requirements adopted by volume Ⅳ of the Chinese Pharmacopoeia 2025 Edition, and to summarize and figure out the main characteristics on dosage forms, physico-chemical testing, microbial and biological testing, reference standards and guidelines The newly revised general chapters of pharmacopoeia give full play to the normative and guiding role of the Chinese Pharmacopoeia standard, track the frontier dynamics of international drug regulatory science and the elaboration of monographs, expand the application of state-of-the-art technologies, and steadily promote the harmonization and unification with the ICH guidelines; further enhance the overall capacity of TCM quality control, actively implement the 3 R principles on animal experiments, and practice the concept of environmental-friendly; replace and/or reduce the use of toxic and hazardous reagents, strengthen the requirements of drug safety control This paper aims to provide a full-view perspective for the comprehensive, correct understanding and accurate implementation of general technical requirements included in the Chinese Pharmacopoeia 2025 Edition.
3.Ferroptosis and osteoporosis
Cheng YANG ; Weimin LI ; Dongcheng RAN ; Jiamu XU ; Wangxiang WU ; Jiafu XU ; Jingjing CHEN ; Guangfu JIANG ; Chunqing WANG
Chinese Journal of Tissue Engineering Research 2025;29(3):554-562
BACKGROUND:It has also been confirmed that ferroptosis is closely related to a variety of musculoskeletal diseases,such as rheumatoid arthritis,osteosarcoma,and osteoporosis.The pathophysiological mechanisms of ferroptosis and osteoporosis need to be further studied and elucidated to broaden our understanding of iron metabolism and osteoporosis.It will provide research ideas for the future elucidation of new mechanisms of osteoporosis and the development of new technologies and drugs for the treatment of osteoporosis. OBJECTIVE:To provide an overview of the current status of research on ferroptosis in osteoporosis,to provide a new direction for future research on the specific molecular mechanisms of osteoporosis,and to provide more effective and better options for osteoporosis treatment strategies. METHODS:The first author used the computer to search the literature published from 2000 to 2024 in CNKI,WanFang,VIP,and PubMed databases with search terms"ferroptosis,iron metabolism,osteoporosis,osteoblast,osteoclast,bone metabolism,signal pathway,musculoskeletal,review"in Chinese and English.A total of 68 articles were finally included according to the selection criteria. RESULTS AND CONCLUSION:(1)Ferroptosis is a new type of cell death discovered in recent years,which is usually accompanied by a large amount of iron accumulation and lipid peroxidation during cell death,and its occurrence is iron-dependent.This is distinctly different from several types of cell death that are currently being hotly studied(e.g.,cellular pyroptosis,necrotic apoptosis,cuproptosis,and autophagy).(2)Intracellular iron homeostasis is manifested as a balance between iron uptake,export,utilization,and storage.The body's iron regulatory system includes systemic and intracellular regulation.The main factor of systemic regulation is hepcidin produced by hepatic secretion,and cellular regulation depends on the iron regulatory protein/iron response element system.Of course,intracellular iron homeostasis can be controlled by other factors,such as hypoxia,cytokines,and hormones.(3)Lipid peroxidation causes oxidative damage to biological membranes(plasma membrane and internal organelle membranes),lipoproteins,and other lipid-containing molecules.Polyunsaturated fatty acid-containing phospholipids are important targets of lipid peroxidation.Free polyunsaturated fatty acid is an important substrate for lipid oxidation and can bind to the phospholipid bilayer,leading to over-oxidation and thus triggering lipid apoptosis.(4)Several studies have shown that osteoblasts are overloaded with iron in different ways,resulting in the accumulation of unstable ferrous iron and the generation of reactive oxygen species and lipid peroxides,causing ferroptosis of osteoblasts and ultimately a decrease in bone formation,affecting bone homeostasis and the development of osteoporosis.(5)Osteoclasts are large multinucleated cells formed by the fusion of mononuclear macrophage cell lines or bone marrow mesenchymal stem cells induced by nuclear factor-κB ligand receptor activator,and they have the function of bone resorption.Iron ions can promote osteoclast differentiation and bone resorption through the production of intracellular lipid reactive oxygen species,while iron chelators can inhibit osteoclast formation in vitro and thus affect the occurrence and development of osteoporosis.
4.Effect of fibroblast growth factor receptor 1 inhibitor on bone destruction in rats with collagen-induced arthritis
Haihui HAN ; Xiaohui MENG ; Bo XU ; Lei RAN ; Qi SHI ; Lianbo XIAO
Chinese Journal of Tissue Engineering Research 2025;29(5):968-977
BACKGROUND:Preliminary research by our group suggests that targeting fibroblast growth factor receptor 1(FGFR1)may be an effective strategy for treating RA. OBJECTIVE:To investigate the effects of an FGFR1 inhibitor(PD173074)on bone destruction in rats with collagen-induced arthritis. METHODS:Twenty-five female Sprague-Dawley rats were randomly divided into five groups:normal control group,model group,methotrexate group,low-dose PD173074 group,and high-dose PD173074 group.Except for the normal control group,rat models of type Ⅱ collagen-induced arthritis were made in each group.After successful modeling,rats were injected intraperitoneally with sterile PBS in the normal and model groups,1.04 mg/kg methotrexate in the methotrexate group,and 5 and 20 mg/kg in the low-dose group and high-dose PD173074 groups,once a week.After 4 weeks of drug administration,clinical symptoms and joint swelling in rats were observed.Micro-CT was used for three-dimensional reconstruction and analysis of the ankle joints.Pathological changes in the ankle joints were observed.Periarticular angiogenesis and the expression of receptor activator of nuclear factor-Κb ligand were detected.The expression levels of p-FGFR1,vascular endothelial growth factor A,and tartrate-resistant acid phosphatase in the synovial membrane were measured.Pathological changes in the liver,spleen,and kidney were observed and liver,spleen,and kidney indices were calculated. RESULTS AND CONCLUSION:PD173074 could alleviate clinical symptoms and joint swelling,delay bone loss,improve bone structure,reduce synovial invasion and cartilage bone erosion,reduce the number of periarticular osteoclasts,inhibit angiogenesis in synovial tissues,reduce the expression of receptor activator of nuclear factor-Κb ligand,and inhibit the expression of FGFR1 phosphorylated protein,tartrate-resistant acid phosphatase and vascular endothelial growth factor A.Pathologic observation of the liver,spleen and kidney in rats showed no obvious toxic side effects after PD173074 treatment.To conclude,the FGFR1 inhibitor can delay the progression of joint inflammation and bone destruction and inhibit angiogenesis in the rat model of type Ⅱ collagen-induced arthritis.The therapeutic effect of PD173074 has been preliminarily validated in the type Ⅱ collagen-induced arthritis model and may act by inhibiting FGFR1 phosphorylation,which provides a direction for the search of new therapeutic targets for rheumatoid arthritis.
5.Inhibition of HDAC3 Promotes Psoriasis Development in Mice Through Regulating Th17
Fan XU ; Xin-Rui ZHANG ; Yang-Chen XIA ; Wen-Ting LI ; Hao CHEN ; An-Qi QIN ; Ai-Hong ZHANG ; Yi-Ran ZHU ; Feng TIAN ; Quan-Hui ZHENG
Progress in Biochemistry and Biophysics 2025;52(4):1008-1017
ObjectiveTo investigate the influence of histone deacetylase 3 (HDAC3) on the occurrence, development of psoriasis-like inflammation in mice, and the relative immune mechanisms. MethodsHealthy C57BL/6 mice aged 6-8 weeks were selected and randomly divided into 3 groups: control group (Control), psoriasis model group (IMQ), and HDAC3 inhibitor RGFP966-treated psoriasis model group (IMQ+RGFP966). One day prior to the experiment, the back hair of the mice was shaved. After a one-day stabilization period, the mice in Control group was treated with an equal amount of vaseline, while the mice in IMQ group was treated with imiquimod (62.5 mg/d) applied topically on the back to establish a psoriasis-like inflammation model. The mice in IMQ+RGFP966 group received intervention with a high dose of the HDAC3-selective inhibitor RGFP966 (30 mg/kg) based on the psoriasis-like model. All groups were treated continuously for 5 d, during which psoriasis-like inflammation symptoms (scaling, erythema, skin thickness), body weight, and mental status were observed and recorded, with photographs taken for documentation. After euthanasia, hematoxylin-eosin (HE) staining was used to assess the effect of RGFP966 on the skin tissue structure of the mice, and skin thickness was measured. The mRNA and protein expression levels of HDAC3 in skin tissues were detected using reverse transcription real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot (WB), respectively. Flow cytometry was employed to analyze neutrophils in peripheral blood and lymph nodes, CD4+ T lymphocytes, CD8+ T lymphocytes in peripheral blood, and IL-17A secretion by peripheral blood CD4+ T lymphocytes. Additionally, spleen CD4+ T lymphocyte expression of HDAC3, CCR6, CCR8, and IL-17A secretion levels were analyzed. Immunohistochemistry was used to detect the localization and expression levels of HDAC3, IL-17A, and IL-10 in skin tissues. ResultsCompared with the Control group, the IMQ group exhibited significant psoriasis-like inflammation, characterized by erythema, scaling, and skin wrinkling. Compared with the IMQ group, RGFP966 exacerbated psoriasis-like inflammatory symptoms, leading to increased hyperkeratosis. The psoriasis area and severity index (PASI) skin symptom scores were higher in the IMQ group than those in the Control group, and the scores were further elevated in the IMQ+RGFP966 group compared to the IMQ group. Skin thickness measurements showed a trend of IMQ+RGFP966>IMQ>Control. The numbers of neutrophils in the blood and lymph nodes increased sequentially in the Control, IMQ, and IMQ+RGFP966 groups, with a similar trend observed for CD4+ and CD8+ T lymphocytes in the blood. In skin tissues, compared with the Control group, the mRNA and protein levels of HDAC3 decreased in the IMQ group, but RGFP966 did not further reduce these expressions. HDAC3 was primarily located in the nucleus. Compared with the Control group, the nuclear HDAC3 content decreased in the skin tissues of the IMQ group, and RGFP966 further reduced nuclear HDAC3. Compared with the Control and IMQ groups, RGFP966 treatment decreased HDAC3 expression in splenic CD4+ and CD8+ T cells. RGFP966 treatment increased the expression of CCR6 and CCR8 in splenic CD4+ T cells and enhanced IL-17A secretion by peripheral blood and splenic CD4+ T lymphocytes. Additionally, compared with the IMQ group, RGFP966 reduced IL-10 protein levels and upregulated IL-17A expression in skin tissues. ConclusionRGFP966 exacerbates psoriatic-like inflammatory responses by inhibiting HDAC3, increasing the secretion of the cytokine IL-17A, and upregulating the expression of chemokines CCR8 and CCR6.
6.History, Experience, Opportunities, and Challenges in Esophageal Cancer Prevention and Treatment in Linxian, Henan Province, A High Incidence Area for Esophageal Cancer
Lidong WANG ; Xiaoqian ZHANG ; Xin SONG ; Xueke ZHAO ; Duo YOU ; Lingling LEI ; Ruihua XU ; Jin HUANG ; Wenli HAN ; Ran WANG ; Qide BAO ; Aifang JI ; Lei MA ; Shegan GAO
Cancer Research on Prevention and Treatment 2025;52(4):251-255
Linxian County in Henan Province, Northern China is known as the region with the highest incidence and mortality rate of esophageal cancer worldwide. Since 1959, the Henan medical team has conducted field work on esophageal cancer prevention and treatment in Linxian. Through three generations of effort exerted by oncologists over 65 years of research on esophageal cancer prevention and treatment in Linxian, the incidence rate of esophageal squamous cell carcinoma in this area has dropped by nearly 50%, and the 5-year survival rate has increased to 40%, reaching the international leading
7.Alanine transferase test results and exploration of threshold adjustment strategies for blood donors in Shenzhen, China
Xin ZHENG ; Yuanye XUE ; Haobiao WANG ; Litiao WU ; Ran LI ; Yingnan DANG ; Tingting CHEN ; Xiaoxuan XU ; Xuezhen ZENG ; Jinfeng ZENG
Chinese Journal of Blood Transfusion 2025;38(4):488-494
[Objective] To conduct a retrospective statistical comparison of alanine aminotransferase (ALT) test values in blood donors prior to blood collection, aiming to analyze the objective characteristics of the population with elevated ALT levels (ALT>50 U/L) and provide reference data for adjusting the screening eligibility threshold for ALT. [Methods] The preliminary ALT screening data of 30 341 blood donor samples collected prior to blood donation from three smart blood donation sites at the Shenzhen Blood Center between 2022 and 2023 were extracted and compared with data from a health examination department of a tertiary hospital in Shenzhen (representing the general population, n=24 906). Both datasets were categorized and statistically described. A retrospective analysis was conducted to examine the associations between ALT test results and factors such as donors' gender, age, ethnicity, donation site, donation season, and frequency of blood donation. [Results] The ALT levels in both blood donors and the general population were non-normally distributed. The 95th percentile of ALT values was calculated as 61.4 U/L (male: 67.8 U/L, female: 39.3 U/L) for blood donors and 58.1 U/L (male: 63.7 U/L, female: 51.2 U/L) for the general population. The non-compliance rates (ALT>50 U/L) were 7.65% (2 321/30 341) in blood donors and 7.08% (1 763/24 906) in the general population. There were significant differences (P<0.05) in the ALT failure rate among blood donors based on gender, age, and donation site, but no significant differences (P>0.05) during the blood donation season. There was no statistically significant difference (P>0.05) in the positive rates of four serological markers (HBsAg, anti HCV, HIV Ag/Ab, anti TP) for blood screening pathogens between ALT unqualified and qualified individuals (2.05% vs 1.5%). If the ALT qualification threshold was raised from 50 U/L to 90 U/L, the non qualification rates of male and female blood donors would decrease from 9.82% (2 074/21 125) to 2.23% (471/21 125) and from 2.70% (249/9 216) to 0.75% (69/9 216), respectively. Among the 154 blood donors who donated blood more than 3 times, 88.31% of the 248 ALT test results were in the range of 50-90 U/L. Among them, 9 cases had ALT>130 U/L, and ALT was converted to qualified in subsequent blood donations. [Conclusion] There are differences in the ALT failure rate among blood donors of different genders and ages, and different blood donation sites and operators can also affect the ALT detection values of blood donors. The vast majority of blood donors with ALT failure are caused by transient and non pathological factors. With the widespread use of blood virus nucleic acid testing, appropriately increasing the ALT qualification threshold for blood donors can expand the qualified population and alleviate the shortage of blood sources, and the risk of blood safety will not increase.
8.Research on Magnetic Stimulation Intervention Technology for Alzheimer’s Disease Guided by Heart Rate Variability
Shu-Ting CHEN ; Du-Yan GENG ; Chun-Meng FAN ; Wei-Ran ZHENG ; Gui-Zhi XU
Progress in Biochemistry and Biophysics 2025;52(5):1264-1278
ObjectiveNon-invasive magnetic stimulation technology has been widely used in the treatment of Alzheimer’s disease (AD), but there is a lack of convenient and timely methods for evaluating and providing feedback on the effectiveness of the stimulation, which can be used to guide the adjustment of the stimulation protocol. This study aims to explore the possibility of heart rate variability (HRV) in diagnosing AD and guiding AD magnetic stimulation intervention techniques. MethodsIn this study, we used a 40 Hz, 10 mT pulsed magnetic field to expose AD mouse models to whole-body exposure for 18 d, and detected the behavioral and electroencephalographic signals before and after exposure, as well as the instant electrocardiographic signals after exposure every day. ResultsUsing one-way ANOVA and Pearson correlation coefficient analysis, we found that some HRV indicators could identify AD mouse models as accurately as behavioral and electroencephalogram(EEG) changes (P<0.05) and significantly distinguish the severity of the disease (P<0.05), including rMSSD, pNN6, LF/HF, SD1/SD2, and entropy arrangement. These HRV indicators showed good correlation and statistical significance with behavioral and EEG changes (r>0.3, P<0.05); HRV indicators were significantly modulated by the magnetic field exposure before and after the exposure, both of which were observed in the continuous changes of electrocardiogram (ECG) (P<0.05), and the trend of the stimulation effect was more accurately observed in the continuous changes of ECG. ConclusionHRV can accurately reflect the pathophysiological changes and disease degree, quickly evaluate the effect of magnetic stimulation, and has the potential to guide the pattern of magnetic exposure, providing a new idea for the study of personalized electromagnetic neuroregulation technology for brain diseases.
9.Association of serum exosomal miR-122-5p with the prognosis of hepatic confluent necrosis and fibrosis in patients with chronic hepatitis B
Quanwei HE ; Ran XU ; Wei HAN ; Sihao WANG ; Yan CHEN ; Yongping YANG
Journal of Clinical Hepatology 2025;41(5):888-899
ObjectiveTo investigate the association of serum exosomal microRNAs (miRNAs) with hepatic inflammatory injury and histological outcomes in patients with chronic hepatitis B (CHB). MethodsPeripheral serum samples were collected from six healthy adults and six patients with CHB, and size exclusion chromatography was used to extract exosomes. Small RNA sequencing and transcriptomic analysis were used to identify the serum exosomal miRNAs associated with liver inflammatory injury and fibrosis, and quantitative real-time PCR was used for validation in a mouse model of acute liver injury induced by lipopolysaccharide/D-galactosamine, a rat model of liver fibrosis induced by carbon tetrachloride, and 84 CHB patients undergoing liver biopsy twice before and after treatment. The independent-samples t test was used for comparison of normally distributed continuous data between two groups; an analysis of variance was used for comparison between multiple groups, and the Tukey test was used for further comparison between two groups. The Mann-Whitney U test was used for comparison of non-normally distributed continuous data between two groups; the Kruskal-Wallis H test was used for comparison between multiple groups, and the Dunn test was used for further comparison between two groups. The chi-square test or the Fisher’s exact test was used for comparison of categorical data between groups. The univariate and multivariate Logistic regression analyses were used to investigate influencing factors. ResultsAbnormal expression of serum exosomal miR-122-5p was observed in patients with CHB, and it was downregulated in patients with confluent necrosis and advanced fibrosis. In the mouse model of acute liver injury and the rat model of liver fibrosis, compared with the control group, the model group had a significant reduction in the expression level of miR-122-5p in the liver (P=0.048 and 0.014), and compared with the patients with mild liver injury, the patients with severe confluent necrosis and advanced fibrosis showed a significant reduction in the expression level of miR-122-5p in liver tissue (P<0.05). Among the 84 CHB patients, the patients with severe hepatic confluent necrosis or advanced liver fibrosis had a significantly lower expression level of serum exosomal miR-122-5p than those with mild liver injury (P<0.001 and P=0.003). The multivariate Logistic regression analysis showed that the expression level of miR-122-5p was an independent influencing factor for confluent necrosis (odds ratio [OR]=0.001, 95% confidence interval [CI]: 0.000 — 0.037, P=0.005) and liver fibrosis degree (OR=0.568, 95%CI: 0.331 — 0.856, P=0.019). In addition, compared with the patients with low expression of miR-122-5p, the patients with high expression of miR-122-5p before treatment had a significantly higher reversal rate of liver fibrosis after 72 weeks of antiviral therapy (64.3% vs 38.1%, P=0.029). ConclusionSerum exosomal miR-122-5p in CHB patients is closely associated with the progression of hepatic confluent necrosis and fibrosis, and the reduction in the expression level of miR-122-5p may aggravate hepatic confluent necrosis, promote the progression of fibrosis, and affect the histological outcome of CHB patients after antiviral therapy.
10.The Regulatory Mechanisms of Dopamine Homeostasis in Behavioral Functions Under Microgravity
Xin YANG ; Ke LI ; Ran LIU ; Xu-Dong ZHAO ; Hua-Lin WANG ; Lan-Qun MAO ; Li-Juan HOU
Progress in Biochemistry and Biophysics 2025;52(8):2087-2102
As China accelerates its efforts in deep space exploration and long-duration space missions, including the operationalization of the Tiangong Space Station and the development of manned lunar missions, safeguarding astronauts’ physiological and cognitive functions under extreme space conditions becomes a pressing scientific imperative. Among the multifactorial stressors of spaceflight, microgravity emerges as a particularly potent disruptor of neurobehavioral homeostasis. Dopamine (DA) plays a central role in regulating behavior under space microgravity by influencing reward processing, motivation, executive function and sensorimotor integration. Changes in gravity disrupt dopaminergic signaling at multiple levels, leading to impairments in motor coordination, cognitive flexibility, and emotional stability. Microgravity exposure induces a cascade of neurobiological changes that challenge dopaminergic stability at multiple levels: from the transcriptional regulation of DA synthesis enzymes and the excitability of DA neurons, to receptor distribution dynamics and the efficiency of downstream signaling pathways. These changes involve downregulation of tyrosine hydroxylase in the substantia nigra, reduced phosphorylation of DA receptors, and alterations in vesicular monoamine transporter expression, all of which compromise synaptic DA availability. Experimental findings from space analog studies and simulated microgravity models suggest that gravitational unloading alters striatal and mesocorticolimbic DA circuitry, resulting in diminished motor coordination, impaired vestibular compensation, and decreased cognitive flexibility. These alterations not only compromise astronauts’ operational performance but also elevate the risk of mood disturbances and motivational deficits during prolonged missions. The review systematically synthesizes current findings across multiple domains: molecular neurobiology, behavioral neuroscience, and gravitational physiology. It highlights that maintaining DA homeostasis is pivotal in preserving neuroplasticity, particularly within brain regions critical to adaptation, such as the basal ganglia, prefrontal cortex, and cerebellum. The paper also discusses the dual-edged nature of DA plasticity: while adaptive remodeling of synapses and receptor sensitivity can serve as compensatory mechanisms under stress, chronic dopaminergic imbalance may lead to maladaptive outcomes, such as cognitive rigidity and motor dysregulation. Furthermore, we propose a conceptual framework that integrates homeostatic neuroregulation with the demands of space environmental adaptation. By drawing from interdisciplinary research, the review underscores the potential of multiple intervention strategies including pharmacological treatment, nutritional support, neural stimulation techniques, and most importantly, structured physical exercise. Recent rodent studies demonstrate that treadmill exercise upregulates DA transporter expression in the dorsal striatum, enhances tyrosine hydroxylase activity, and increases DA release during cognitive tasks, indicating both protective and restorative effects on dopaminergic networks. Thus, exercise is highlighted as a key approach because of its sustained effects on DA production, receptor function, and brain plasticity, making it a strong candidate for developing effective measures to support astronauts in maintaining cognitive and emotional stability during space missions. In conclusion, the paper not only underscores the centrality of DA homeostasis in space neuroscience but also reflects the authors’ broader academic viewpoint: understanding the neurochemical substrates of behavior under microgravity is fundamental to both space health and terrestrial neuroscience. By bridging basic neurobiology with applied space medicine, this work contributes to the emerging field of gravitational neurobiology and provides a foundation for future research into individualized performance optimization in extreme environments.

Result Analysis
Print
Save
E-mail