1.Clinicopathological Characteristics of HER2-Positive Breast Cancer Patients with BRCA1/2 Pathogenic Variants and Their Response to Neoadjuvant Targeted Therapy
Xingyu LIAO ; Huimin LIU ; Jie SUN ; Li HU ; Juan ZHANG ; Lu YAO ; Ye XU ; Yuntao XIE
Cancer Research on Prevention and Treatment 2025;52(6):491-495
		                        		
		                        			
		                        			Objective To analyze the proportion and clinicopathological characteristics of HER2-positive breast cancer patients with BRCA1/2 pathogenic variants, and their response to neoadjuvant anti-HER2 targeted therapy. Methods The clinicopathological data of 531 breast cancer patients with germline BRCA1/2 pathogenic variants (201 with BRCA1 variants and 330 with BRCA2 variants) were analyzed. Results Among the 201 BRCA1 and 330 BRCA2 variants, 17 (8.5%) and 42 (12.7%) HER2-positive breast cancer cases were identified, respectively, accounting for 11.1% of all BRCA1/2-mutated breast cancers. Compared with BRCA1/2-mutated HR-positive/HER2-negative patients, HER2-positive patients did not present any significant differences in clinicopathological features; however, compared with triple-negative breast cancer patients, HER2-positive patients had a later onset age and lower tumor grade. Among the 17 patients who received neoadjuvant anti-HER2 targeted therapy, 10 cases achieved pCR (58.8%), whereas 7 cases did not (41.2%). Conclusion HER2-positive breast cancer accounts for more than 10% of BRCA1/2-mutated patients. Approximately 40% of these patients fail to achieve pCR after neoadjuvant targeted therapy. This phenomenon highlights the possibility of combining anti-HER2 targeted agents with poly (adenosine diphosphate-ribose) polymerase inhibitors.
		                        		
		                        		
		                        		
		                        	
2.Neuroplasticity Mechanisms of Exercise-induced Brain Protection
Li-Juan HOU ; Lan-Qun MAO ; Wei CHEN ; Ke LI ; Xu-Dong ZHAO ; Yin-Hao WANG ; Zi-Zheng YANG ; Tian-He WEI
Progress in Biochemistry and Biophysics 2025;52(6):1435-1452
		                        		
		                        			
		                        			Neuroscience is a significant frontier discipline within the natural sciences and has become an important interdisciplinary frontier scientific field. Brain is one of the most complex organs in the human body, and its structural and functional analysis is considered the “ultimate frontier” of human self-awareness and exploration of nature. Driven by the strategic layout of “China Brain Project”, Chinese scientists have conducted systematic research focusing on “understanding the brain, simulating the brain, and protecting the brain”. They have made breakthrough progress in areas such as the principles of brain cognition, mechanisms and interventions for brain diseases, brain-like computation, and applications of brain-machine intelligence technology, aiming to enhance brain health through biomedical technology and improve the quality of human life. Due to limited understanding and comprehension of neuroscience, there are still many important unresolved issues in the field of neuroscience, resulting in a lack of effective measures to prevent and protect brain health. Therefore, in addition to actively developing new generation drugs, exploring non pharmacological treatment strategies with better health benefits and higher safety is particularly important. Epidemiological data shows that, exercise is not only an indispensable part of daily life but also an important non-pharmacological approach for protecting brain health and preventing neurodegenerative diseases, forming an emerging research field known as motor neuroscience. Basic research in motor neuroscience primarily focuses on analyzing the dynamic coding mechanisms of neural circuits involved in motor control, breakthroughs in motor neuroscience research depend on the construction of dynamic monitoring systems across temporal and spatial scales. Therefore, high spatiotemporal resolution detection of movement processes and movement-induced changes in brain structure and neural activity signals is an important technical foundation for conducting motor neuroscience research and has developed a set of tools based on traditional neuroscience methods combined with novel motor behavior decoding technologies, providing an innovative technical platform for motor neuroscience research. The protective effect of exercise in neurodegenerative diseases provides broad application prospects for its clinical translation. Applied research in motor neuroscience centers on deciphering the regulatory networks of neuroprotective molecules mediated by exercise. From the perspectives of exercise promoting neurogenesis and regeneration, enhancing synaptic plasticity, modulating neuronal functional activity, and remodeling the molecular homeostasis of the neuronal microenvironment, it aims to improve cognitive function and reduce the incidence of Parkinson’s disease and Alzheimer’s disease. This has also advanced research into the molecular regulatory networks mediating exercise-induced neuroprotection and facilitated the clinical application and promotion of exercise rehabilitation strategies. Multidimensional analysis of exercise-regulated neural plasticity is the theoretical basis for elucidating the brain-protective mechanisms mediated by exercise and developing intervention strategies for neurological diseases. Thus,real-time analysis of different neural signals during active exercise is needed to study the health effects of exercise throughout the entire life cycle and enhance lifelong sports awareness. Therefore, this article will systematically summarize the innovative technological developments in motor neuroscience research, review the mechanisms of neural plasticity that exercise utilizes to protect the brain, and explore the role of exercise in the prevention and treatment of major neurodegenerative diseases. This aims to provide new ideas for future theoretical innovations and clinical applications in the field of exercise-induced brain protection. 
		                        		
		                        		
		                        		
		                        	
3.Analysis of health-related lifestyles among primary and secondary school students in nutrition improvement program regions of China between 2021 and 2023
Chinese Journal of School Health 2025;46(6):788-791
		                        		
		                        			Objective:
		                        			To analyze the features of unhealthy lifestyle patterns among primary and secondary school students in the nutrition improvement program for rural compulsory education students (NIPRCES) areas in China in 2021 and 2023, so as to provide data support for lifestyle promotion and healthy development among primary and secondary school students.
		                        		
		                        			Methods:
		                        			Adopting a cluster random sampling method, data on primary and secondary students aged 7-15 years from nutrition and health surveillance of China NIPRCES in 2021 and 2023 were collected. The prevalence of unhealthy lifestyles among primary and secondary students such as physical inactivity, outdoor inactivity, excessive screen time, and sleep deprivation by gender, school section, urban/rural, and region were analyzed. The reporting rates of the above indicators among primary and secondary students were compared by  Chi-square test.
		                        		
		                        			Results:
		                        			In 2021 and 2023, the rates of moderate to vigorous physical inactivity among primary and secondary school students were 79.2% and 80.4%, the rates of  outdoor inactivity were 42.8% and 49.3%, the rates of  excessive video time were 2.6% and 2.9%, the rates of  sleep deprivation were 32.9% and 22.6%, and the differences were statistically significant( χ 2=51.86,1 071.48,18.36,3 296.99, P <0.05). In 2023, the rate of outdoor inactivity for primary and secondary students increased by 6.5 percentage points compared with 2021, and the rate of sleep deprivation decreased by 10.3 percentage points compared with that in 2021. In 2021 and 2023, the reporting rates of moderate to vigorous physical inactivity, outdoor inactivity, and sleep deprivation among girls and junior high school students were higher than those among boys ( χ 2=174.41,180.11; 175.75, 85.46 ;92.22,151.35) and elementary school students ( χ 2=136.64,5.75; 40.55,4.71;162.80,3 291.61); the reporting rates of moderate to vigorous physical inactivity( χ 2=194.43,118.60) and sleep deprivation ( χ 2=969.66,983.72) among urban students were higher than those among rural students; the reporting rates of excessive video time for boys and junior high school students were higher than those for girls ( χ 2=103.62,84.85) and elementary school students ( χ 2=810.09,626.51)( P <0.05). From a regional distribution perspective, the reporting rates of moderato to vigorous physical inactivity, outdoor inactivity, and excessive video time among primary and seconday school students in the central and western regions were lower than those in the eastern region ( χ 2= 663.44,302.78; 356.97,82.10;50.89,81.83) ( P <0.05).
		                        		
		                        			Conclusions
		                        			Unhealthy lifestyles remain prevalent among primary and secondary students in NIPRCES areas of China. These findings underscore the need to strengthen policy implementation for promoting healthy lifestyles among primary and secondary school students.
		                        		
		                        		
		                        		
		                        	
4.Elevated blood pressure and its association with dietary patterns among Chinese children and adolescents aged 7-17 years
Chinese Journal of School Health 2025;46(6):863-867
		                        		
		                        			Objective:
		                        			To understand the prevalence of elevated blood pressure and its association with dietary patterns in children and adolescents in China, providing evidence for developing dietary intervention of hypertension in children and adolescents.
		                        		
		                        			Methods:
		                        			Data were derived from the China Children s Nutrition and Health System Survey and Application Project(2019-2021). A stratified cluster random sampling method was used to include 7 933 participants from 28 survey sites in seven major regions of Northeast, North, Northwest, East, Central, South and Southwest China. Multivariate Logistic regression models were used to analyze associations between demographic characteristics, nutritional status and elevated blood pressure. Exploratory factor analysis identified dietary patterns, which were divided into three quartile groups (T3, T2, T1) based on factor scores (compliance for dietary pattern) from high to low, and multivariate Logistic regression model assessed the correlation between elevated blood pressure and dietary patterns.
		                        		
		                        			Results:
		                        			The prevalence of elevated blood pressure was 15.4% among Chinese children aged 7-17 years. Significant differences were observed across nutritional status (reference: underweight; normal weight:  OR =1.57; overweight:  OR = 2.61 ; obesity:  OR =3.85), urban/rural residence (reference: rural; urban:  OR =0.86), and paternal education (reference: junior high school and below; bachelor degree or above:  OR =0.68) ( P <0.05). The detection rates of high blood pressure in T3 group children and adolescents with four dietary patterns (staple food, animal based food, snacks, vegetables and fruits) were 15.7%, 14.6%, 16.8%, and 15.8%, respectively. After adjusting for residence, paternal education, and nutritional status, the "snack dietary pattern" (mainly candy, sugar sweetened beverages, and processed snacks) showed positive associations with elevated blood pressure in T2 ( OR =1.21) and T3 ( OR =1.19) tertiles ( P <0.05).
		                        		
		                        			Conclusions
		                        			The snack dietary pattern is a related factor for elevated blood pressure in children and adolescents. Restricting unhealthy snack intake may promote cardiovascular health.
		                        		
		                        		
		                        		
		                        	
5.The Regulatory Mechanisms of Dopamine Homeostasis in Behavioral Functions Under Microgravity
Xin YANG ; Ke LI ; Ran LIU ; Xu-Dong ZHAO ; Hua-Lin WANG ; Lan-Qun MAO ; Li-Juan HOU
Progress in Biochemistry and Biophysics 2025;52(8):2087-2102
		                        		
		                        			
		                        			As China accelerates its efforts in deep space exploration and long-duration space missions, including the operationalization of the Tiangong Space Station and the development of manned lunar missions, safeguarding astronauts’ physiological and cognitive functions under extreme space conditions becomes a pressing scientific imperative. Among the multifactorial stressors of spaceflight, microgravity emerges as a particularly potent disruptor of neurobehavioral homeostasis. Dopamine (DA) plays a central role in regulating behavior under space microgravity by influencing reward processing, motivation, executive function and sensorimotor integration. Changes in gravity disrupt dopaminergic signaling at multiple levels, leading to impairments in motor coordination, cognitive flexibility, and emotional stability. Microgravity exposure induces a cascade of neurobiological changes that challenge dopaminergic stability at multiple levels: from the transcriptional regulation of DA synthesis enzymes and the excitability of DA neurons, to receptor distribution dynamics and the efficiency of downstream signaling pathways. These changes involve downregulation of tyrosine hydroxylase in the substantia nigra, reduced phosphorylation of DA receptors, and alterations in vesicular monoamine transporter expression, all of which compromise synaptic DA availability. Experimental findings from space analog studies and simulated microgravity models suggest that gravitational unloading alters striatal and mesocorticolimbic DA circuitry, resulting in diminished motor coordination, impaired vestibular compensation, and decreased cognitive flexibility. These alterations not only compromise astronauts’ operational performance but also elevate the risk of mood disturbances and motivational deficits during prolonged missions. The review systematically synthesizes current findings across multiple domains: molecular neurobiology, behavioral neuroscience, and gravitational physiology. It highlights that maintaining DA homeostasis is pivotal in preserving neuroplasticity, particularly within brain regions critical to adaptation, such as the basal ganglia, prefrontal cortex, and cerebellum. The paper also discusses the dual-edged nature of DA plasticity: while adaptive remodeling of synapses and receptor sensitivity can serve as compensatory mechanisms under stress, chronic dopaminergic imbalance may lead to maladaptive outcomes, such as cognitive rigidity and motor dysregulation. Furthermore, we propose a conceptual framework that integrates homeostatic neuroregulation with the demands of space environmental adaptation. By drawing from interdisciplinary research, the review underscores the potential of multiple intervention strategies including pharmacological treatment, nutritional support, neural stimulation techniques, and most importantly, structured physical exercise. Recent rodent studies demonstrate that treadmill exercise upregulates DA transporter expression in the dorsal striatum, enhances tyrosine hydroxylase activity, and increases DA release during cognitive tasks, indicating both protective and restorative effects on dopaminergic networks. Thus, exercise is highlighted as a key approach because of its sustained effects on DA production, receptor function, and brain plasticity, making it a strong candidate for developing effective measures to support astronauts in maintaining cognitive and emotional stability during space missions. In conclusion, the paper not only underscores the centrality of DA homeostasis in space neuroscience but also reflects the authors’ broader academic viewpoint: understanding the neurochemical substrates of behavior under microgravity is fundamental to both space health and terrestrial neuroscience. By bridging basic neurobiology with applied space medicine, this work contributes to the emerging field of gravitational neurobiology and provides a foundation for future research into individualized performance optimization in extreme environments. 
		                        		
		                        		
		                        		
		                        	
6.Influence of COVID-19 infection on the early clinical efficacy of patients undergoing single valve replacement surgery: A retrospective cohort study
Liu XU ; Yongfeng HUO ; Lijun TIAN ; Yun ZHU ; Juan XIAO ; Ruiyan MA
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(05):634-638
		                        		
		                        			
		                        			Objective  To investigate the impact of COVID-19 infection on the early clinical outcomes of patients undergoing valve replacement. Methods Perioperative data of patients who underwent single valve replacement at the Second Affiliated Hospital of Chinese People's Liberation Army Medical University from January to February 2023 were consecutively collected. Based on COVID-19 infection status, patients were divided into a COVID-19 group and a non-COVID-19 group. The perioperative data were compared between the two groups. Results A total of 136 patients were included, comprising 53 males and 83 females, with a mean age of (53.4±10.2) years. There were 32 patients receiving aortic valve replacements, 102 mitral valve replacements, and 2 tricuspid valve replacements. The COVID-19 group comprised 70 patients, and the non-COVID-19 group included 66 patients. No statistical difference was observed in the incidence of postoperative complications between the two groups [9.09% (6/66) vs. 11.43% (8/70), P=0.654]. However, the COVID-19 group had longer postoperative mechanical ventilation duration [1 201.00 (1 003.75, 1 347.75) min vs. 913.50 (465.50, 1 251.00) min, P=0.001] and ICU stay [3 (2, 3) days vs. 2 (2, 3) days, P<0.001] compared to the non-COVID-19 group. Additionally, troponin I [4.76 (2.55, 7.93) ng/mL vs. 2.66 (1.19, 5.65) ng/mL, P=0.001] and brain natriuretic peptide [608.50 (249.75, 1 150.00) pg/mL vs. 192.00 (100.93, 314.75) pg/mL, P<0.001] levels were significantly higher in the COVID-19 group. Conclusion For patients with single valve disease undergoing elective surgery, short-term outcomes after recovery from COVID-19 infection are favorable, with no significant increase in in-hospital mortality or postoperative complication rates.
		                        		
		                        		
		                        		
		                        	
7.Adolescent Smoking Addiction Diagnosis Based on TI-GNN
Xu-Wen WANG ; Da-Hua YU ; Ting XUE ; Xiao-Jiao LI ; Zhen-Zhen MAI ; Fang DONG ; Yu-Xin MA ; Juan WANG ; Kai YUAN
Progress in Biochemistry and Biophysics 2025;52(9):2393-2405
		                        		
		                        			
		                        			ObjectiveTobacco-related diseases remain one of the leading preventable public health challenges worldwide and are among the primary causes of premature death. In recent years, accumulating evidence has supported the classification of nicotine addiction as a chronic brain disease, profoundly affecting both brain structure and function. Despite the urgency, effective diagnostic methods for smoking addiction remain lacking, posing significant challenges for early intervention and treatment. To address this issue and gain deeper insights into the neural mechanisms underlying nicotine dependence, this study proposes a novel graph neural network framework, termed TI-GNN. This model leverages functional magnetic resonance imaging (fMRI) data to identify complex and subtle abnormalities in brain connectivity patterns associated with smoking addiction. MethodsThe study utilizes fMRI data to construct functional connectivity matrices that represent interaction patterns among brain regions. These matrices are interpreted as graphs, where brain regions are nodes and the strength of functional connectivity between them serves as edges. The proposed TI-GNN model integrates a Transformer module to effectively capture global interactions across the entire brain network, enabling a comprehensive understanding of high-level connectivity patterns. Additionally, a spatial attention mechanism is employed to selectively focus on informative inter-regional connections while filtering out irrelevant or noisy features. This design enhances the model’s ability to learn meaningful neural representations crucial for classification tasks. A key innovation of TI-GNN lies in its built-in causal interpretation module, which aims to infer directional and potentially causal relationships among brain regions. This not only improves predictive performance but also enhances model interpretability—an essential attribute for clinical applications. The identification of causal links provides valuable insights into the neuropathological basis of addiction and contributes to the development of biologically plausible and trustworthy diagnostic tools. ResultsExperimental results demonstrate that the TI-GNN model achieves superior classification performance on the smoking addiction dataset, outperforming several state-of-the-art baseline models. Specifically, TI-GNN attains an accuracy of 0.91, an F1-score of 0.91, and a Matthews correlation coefficient (MCC) of 0.83, indicating strong robustness and reliability. Beyond performance metrics, TI-GNN identifies critical abnormal connectivity patterns in several brain regions implicated in addiction. Notably, it highlights dysregulations in the amygdala and the anterior cingulate cortex, consistent with prior clinical and neuroimaging findings. These regions are well known for their roles in emotional regulation, reward processing, and impulse control—functions that are frequently disrupted in nicotine dependence. ConclusionThe TI-GNN framework offers a powerful and interpretable tool for the objective diagnosis of smoking addiction. By integrating advanced graph learning techniques with causal inference capabilities, the model not only achieves high diagnostic accuracy but also elucidates the neurobiological underpinnings of addiction. The identification of specific abnormal brain networks and their causal interactions deepens our understanding of addiction pathophysiology and lays the groundwork for developing targeted intervention strategies and personalized treatment approaches in the future. 
		                        		
		                        		
		                        		
		                        	
8.Effect of Modified Chunzetang on Bladder Fibrosis and Detrusor Function in Rats with Neurogenic Bladder Urinary Retention Induced by Spinal Cord Injury via Regulating NF-κB/TGF-β1 Signaling Pathway
Zhenhua XU ; Yanjie LI ; Yafeng REN ; Haoyuan LIU ; Bochao ZHU ; Juan LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(5):95-103
		                        		
		                        			
		                        			ObjectiveTo investigate the therapeutic effect and mechanism of modified Chunzetang on bladder fibrosis and detrusor function in rats with neurogenic bladder urinary retention induced by spinal cord injury. MethodsIn this study, an improved Hassan Shaker spinal cord transection method was used to establish a model of neurogenic bladder urinary retention induced by spinal cord injury, and rats with a spinal cord injury behavior score of 0 were selected for follow-up experiments. The selected rats were randomly divided into a model group (normal saline gavage), low-dose traditional Chinese medicine (TCM) group (gavage of 14.4 g·kg-1 modified Chunzetang), high-dose TCM group (gavage of 28.8 g·kg-1 modified Chunzetang), positive drug group [intraperitoneal injection of 0.05 g·kg-1 nuclear transcription factor-κB (NF-κB) inhibitor pyrrolidine dithiocarbamate (PDTC)], and combination group (intraperitoneal injection of 0.05 g·kg-1 PDTC + gavage of 28.8 g·kg-1 modified Chunzetang). The rats in these groups were administrated with corresponding drugs once a day for four weeks. The BL-420s biofunction acquisition system was used in the experiment to calculate the urodynamic indexes, and the isolated bladder was quickly weighed. The detrusor traction experiment was used to record the minimum bladder contraction tension and frequency in each group. The pathological morphology and tissue fibrosis of detrusor in each group observed by Hematoxycin-eosin (HE) staining and Masson staining were compared. The expression level of α-smooth muscle actin (α-SMA) was detected by immunohistochemistry. Western blot was used to detect the protein expression of NF-κB p65, nuclear transcription factor-κB suppressor protein α (IκBα), transforming growth factor-β1 (TGF-β1), type Ⅰ collagen (ColⅠ), and type Ⅲ collagen (ColⅢ) in bladder tissue of rats in each group. Enzyme-linked immunosorbent assay (ELISA) was used to detect the changes in serum levels of IL-6, IL-1β, and TNF-α. ResultsCompared with that in the sham operation group, the pressure at the urinary leakage point in the model group decreased (P<0.01), and the bladder mass, bladder contractile tension, maximum bladder capacity, and bladder compliance increased (P<0.05,P<0.01). HE staining showed that the arrangement of bladder epithelial cells was disordered, and the pathological manifestations such as mucosa and myometria neutrophil infiltration were obvious. The lamina propria structure was destroyed, and the muscle fiber arrangement was disordered. The interstitial widening and tissue edema were obvious. Masson staining showed that the bladder wall of the model group had more collagen fiber deposition, and the degree of detrusor fibrosis was more severe. The content of detrusor in the visual field was reduced. At the same time, the protein expressions of NF-κB p65, TGF-β1, IκBα, ColⅠ, and ColⅢ in bladder tissue of rats in the model group were significantly increased (P<0.01), and the serum levels of IL-6, IL-1β, and TNF-α were significantly increased (P<0.05). Compared with that in the model group, the pressure at the urinary leakage point in the modified Chunzetang and positive drug groups was increased (P<0.05), and the wet bladder weight, minimum bladder contractile tension, maximum bladder capacity, and bladder compliance were restored (P<0.05, P<0.01). HE and Masson showed that the bladder epithelial cells were relatively neatly arranged, and the structure of the bladder lamina propria was relatively stable. The detrusor bundles were arranged in an orderly manner, and the interstitium was narrow. The degree of tissue edema was relatively low, and the degree of bladder detrusor fibrosis in the modified Chunzetang and positive drug groups was reduced, while the degree of bladder detrusor fibrosis in the positive drug group and combination groups was not obvious. The results of Western blot showed that the expression of NF-κB p65, IκBα, TGF-β1, ColⅠ, and ColⅢ in bladder tissue, as well as the serum levels of IL-6, IL-1β, and TNF-α in modified Chunzetang and positive drug groups were significantly lower, and the expression of bladder tissue-related proteins and the serum levels of IL-6, IL-1β, and TNF-α in the TCM groups decreased significantly with the increase in dose (P<0.05). The results of immunohistochemistry suggested that modified Chunzetang could fully affect the expression of α-SMA in bladder tissue. ConclusionModified Chunzetang can inhibit collagen deposition in bladder tissue of rats with urinary retention induced by spinal cord injury, delay the occurrence and development of bladder fibrosis, and protect the normal contractile function of bladder detrusor, and its mechanism may be related to inhibiting the NF-κB/TGF-β1 signaling pathway, reducing the production of NF-κB p65, IκBα, TGF-β1, ColⅠ, ColⅢ, and other related proteins, and protecting the muscle strength of detrusor. 
		                        		
		                        		
		                        		
		                        	
9.Characteristics and influencing factors of occupational injuries among workers in a cable manufacturing enterprise
Ting XU ; Juan QIAN ; Yishuo GU ; Daozheng DING ; Jianjian QIAO ; Yong QIAN ; Xiaojun ZHU ; Jingguang FAN
Journal of Environmental and Occupational Medicine 2025;42(2):140-144
		                        		
		                        			
		                        			Background Workers in the cable manufacturing industry are exposed to high-speed machinery and equipment for a long time, coupled with heavy workload, which poses significant risks to their physical health. However, the issue of occupational injuries in this industry has not received enough attention yet. Objective To understand the incidence of occupational injury of workers in cable manufacturing industry and to analyze the influencing factors. Method A basic information questionnaire and an occupational injury questionnaire were developed to investigate the occupational injuries of 1 343 workers in a cable manufacturing enterprise in the past year, and a total of 1 225 valid questionnaires were recovered, with an effective rate of 91.2%. Descriptive statistics were used to characterize the causes, injury locations, injury types, and other characteristics of employees’ occupational injuries. Chi-square test was used to analyze the occupational injury status of groups with different demographic characteristics, occupational characteristics, lifestyles, and interpersonal relationships. Logistic regression was used to analyze the influencing factors of occupational injuries. Result The incidence of occupational injuries among workers in a cable manufacturing enterprise in the past year was 8.6%, which mainly happened in male workers (80.0%) and occurred from May to July in summer (45.7%). The main causes were mechanical injuries (32.4%) and object blows (27.6%). The main sources of damage were machinery and equipment (36.2%) as well as raw materials and products (15.2%). The main injuries were located in upper limbs (53.3%) and lower limbs (22.9%). The main types of injuries were fractures (33.3%) and abrasions/contusions/puncture wounds (19.0%). The results of univariate analysis showed that there were statistically significant variations in the incidence of occupational injuries by gender, overtime, pre-job training, years of service in current position, alcohol consumption, physical exercise per week, and co-worker relationship (P<0.05). The logistic regression model showed that workers who exercised less than twice a week, did not participate in pre-job training, worked overtime, and had fair/poor/very poor colleague relationship had a higher risk of occupational injury, while women had a lower risk of occupational injury. Conclusion The distribution of occupational injury population is mainly male, and the time distribution is mainly from May to July. Gender, physical exercise, pre-job training, overtime, and colleague relationship are the influencing factors of occupational injuries. We should strengthen pre-job training, arrange work hours reasonably, and create a good working atmosphere to reduce the occurrence of occupational injuries.
		                        		
		                        		
		                        		
		                        	
10.Relationship between occupational stress and occupational injury of workers in a cable manufacturing enterprise by decision tree model
Ting XU ; Juan QIAN ; Yishuo GU ; Daozheng DING ; Jianjian QIAO ; Yong QIAN ; Xiaojun ZHU ; Jingguang FAN
Journal of Environmental and Occupational Medicine 2025;42(2):145-150
		                        		
		                        			
		                        			Background Social psychological factors have emerged as a key area of research in occupational injury prevention. Occupational stress, a significant component of social psychology, has garnered widespread attention due to its potential impact on occupational injury. Objective To analyze the factors influencing occupational stress among cable manufacturing workers and explore the relationship between occupational stress and occupational injury, and to provide scientific evidence for reducing occupational stress and injury. Methods A questionnaire on basic demographics, occupational injury, and occupational stress (Effort-Reward Imbalance, ERI) was used to investigate 
		                        		
		                        	
            

Result Analysis
Print
Save
E-mail