1.Research progress on the anti-aging mechanism of epigallocatechin gallate
Xiyu RUAN ; Jie ZHANG ; Yahui XU ; Ting ZHANG ; Minghui ZI ; Qiao ZHANG
Journal of Public Health and Preventive Medicine 2025;36(5):140-144
Aging is a natural process in which tissue and organ function declines as organisms age. Aging is the inevitable outcome of the organism and is irreversible. The aging process is accompanied by degenerative changes in the morphological structure of multiple organs of the body, leading to an increase in the incidence of chronic diseases such as hypertension, cardiovascular and cerebrovascular diseases, hyperlipidemia, and diabetes year by year. In recent years, natural phytochemicals have attracted widespread attention from the public due to their advantages such as non-toxicity or low toxicity, low cost, and various biological activities. Epigallocatechin gallate (EGCG) is a dietary polyphenol extracted from green tea, which has a variety of biological functions including anti-oxidation, anti-inflammation, hypoglycemic, hypolipidemic and anti-aging activities. The EGCG-mediated anti-aging mechanism has been investigated in many studies with different aging models. This article reviews the research progress on rodents, nematodes, fruit flies, and cell aging models, focusing on summarizing the lifespan extension and physiological changes of rodents, nematodes and fruit flies after EGCG intervention from multiple angles, and exploring potential mechanism by which EGCG delays aging and extends lifespan. This review provides a theoretical reference for the study of the anti-aging mechanism of phytochemicals.
2.Research progress on the anti-aging mechanism of epigallocatechin gallate
Xiyu RUAN ; Jie ZHANG ; Yahui XU ; Ting ZHANG ; Minghui ZI ; Qiao ZHANG
Journal of Public Health and Preventive Medicine 2025;36(5):140-144
Aging is a natural process in which tissue and organ function declines as organisms age. Aging is the inevitable outcome of the organism and is irreversible. The aging process is accompanied by degenerative changes in the morphological structure of multiple organs of the body, leading to an increase in the incidence of chronic diseases such as hypertension, cardiovascular and cerebrovascular diseases, hyperlipidemia, and diabetes year by year. In recent years, natural phytochemicals have attracted widespread attention from the public due to their advantages such as non-toxicity or low toxicity, low cost, and various biological activities. Epigallocatechin gallate (EGCG) is a dietary polyphenol extracted from green tea, which has a variety of biological functions including anti-oxidation, anti-inflammation, hypoglycemic, hypolipidemic and anti-aging activities. The EGCG-mediated anti-aging mechanism has been investigated in many studies with different aging models. This article reviews the research progress on rodents, nematodes, fruit flies, and cell aging models, focusing on summarizing the lifespan extension and physiological changes of rodents, nematodes and fruit flies after EGCG intervention from multiple angles, and exploring potential mechanism by which EGCG delays aging and extends lifespan. This review provides a theoretical reference for the study of the anti-aging mechanism of phytochemicals.


Result Analysis
Print
Save
E-mail