1.2,3,5,4′-tetrahydroxyldiphenylethylene-2-O-glucoside Attenuates Cerebral Ischemia-reperfusion Injury via PINK1/LETM1 Signaling Pathway
Hongyu ZENG ; Kaimei TAN ; Feng QIU ; Yun XIANG ; Ziyang ZHOU ; Dahua WU ; Chang LEI ; Hongqing ZHAO ; Yuhong WANG ; Xiuli ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):145-154
ObjectiveTo investigate the mechanism by which 2,3,5,4'-tetrahydroxyldiphenylethylene-2-O-glucoside (THSG) mitigates cerebral ischemia/reperfusion (CI/R) injury by regulating mitochondrial calcium overload and promoting mitophagy. MethodsSixty male SD rats were randomized into sham, model, SAS (40 mg·kg-1), and low-, medium- and high-dose (10, 20, 40 mg·kg-1, respectively) THSG groups, with 10 rats in each group. The middle cerebral artery occlusion/reperfusion (MCAO/R) model was established by the modified Longa suture method. An oxygen-glucose deprivation/reoxygenation (OGD/R) model was constructed in PC12 cells. Neurological deficits were assessed via Zea Longa scoring, and cerebral infarct volume was measured by 2,3,5-triphenyltetrazolium chloride (TTC) staining. Structural and functional changes of cortical neurons in MCAO/R rats were assessed by hematoxylin-eosin and Nissl staining. PC12 cell viability was detected by cell counting kit-8 (CCK-8) assay, and mitochondrial calcium levels were quantified by Rhod-2 AM. Immunofluorescence was used to detect co-localization of PTEN-induced kinase 1 (PINK1) and leucine zipper/EF-hand-containing transmembrane protein 1 (LETM1) in neurons. Transmission electron microscopy (TEM) was employed to observe mitochondrial morphology in neurons. Western blot was employed to analyze the expression of translocase of outer mitochondrial membrane 20 (TOMM20), autophagy-associated protein p62, microtubule-associated protein light chain 3 (LC3), cysteinyl aspartate-specific proteinase-9 (Caspase-9), B-cell lymphoma 2-associated protein X (Bax), and cytochrome C (Cyt C). ResultsCompared with the sham group, the model group exhibited increased infarct volume (P<0.01) and neurological deficit scores (P<0.01), neuronal structure was disrupted with reduced Nissl bodies. (P<0.01), mitochondrial swelling/fragmentation, decreased PINK1/LETM1 co-localization (P<0.01), upregulated protein levels of LC3Ⅱ/LC3Ⅰ, TOMM20, Caspase-9, Bax, and Cyt C (P<0.01), downregulated protein level of p62 (P<0.05), weakened PC12 viability (P<0.01), and elevated mitochondrial calcium level (P<0.01). Compared with the model group, THSG and SAS groups showed reduced infarct volumes (P<0.05,P<0.01) and neurological deficit scores (P<0.05,P<0.01), mitigated mitochondrial damage, and increased PINK1/LETM1 co-localization (P<0.01). Medium/high-dose THSG and SAS alleviated the neurological damage, increased Nissl bodies (P<0.05,P<0.01), downregulated the protein levels of p62, TOMM20, Caspase-9, Bax, and Cyt C (P<0.05,P<0.01), and elevated the LC3Ⅱ/LC3Ⅰ level (P<0.05,P<0.01). High-dose THSG enhanced PC12 cell viability (P<0.01), increased PINK1/LETM1 co-localization (P<0.01), and reduced mitochondrial calcium (P<0.01). ConclusionTHSG may exert the neuroprotective effect on CI/R injury by activating the PINK1-LETM1 signaling pathway, reducing the mitochondrial calcium overload, and promoting mitophagy.
2.2,3,5,4′-tetrahydroxyldiphenylethylene-2-O-glucoside Attenuates Cerebral Ischemia-reperfusion Injury via PINK1/LETM1 Signaling Pathway
Hongyu ZENG ; Kaimei TAN ; Feng QIU ; Yun XIANG ; Ziyang ZHOU ; Dahua WU ; Chang LEI ; Hongqing ZHAO ; Yuhong WANG ; Xiuli ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):145-154
ObjectiveTo investigate the mechanism by which 2,3,5,4'-tetrahydroxyldiphenylethylene-2-O-glucoside (THSG) mitigates cerebral ischemia/reperfusion (CI/R) injury by regulating mitochondrial calcium overload and promoting mitophagy. MethodsSixty male SD rats were randomized into sham, model, SAS (40 mg·kg-1), and low-, medium- and high-dose (10, 20, 40 mg·kg-1, respectively) THSG groups, with 10 rats in each group. The middle cerebral artery occlusion/reperfusion (MCAO/R) model was established by the modified Longa suture method. An oxygen-glucose deprivation/reoxygenation (OGD/R) model was constructed in PC12 cells. Neurological deficits were assessed via Zea Longa scoring, and cerebral infarct volume was measured by 2,3,5-triphenyltetrazolium chloride (TTC) staining. Structural and functional changes of cortical neurons in MCAO/R rats were assessed by hematoxylin-eosin and Nissl staining. PC12 cell viability was detected by cell counting kit-8 (CCK-8) assay, and mitochondrial calcium levels were quantified by Rhod-2 AM. Immunofluorescence was used to detect co-localization of PTEN-induced kinase 1 (PINK1) and leucine zipper/EF-hand-containing transmembrane protein 1 (LETM1) in neurons. Transmission electron microscopy (TEM) was employed to observe mitochondrial morphology in neurons. Western blot was employed to analyze the expression of translocase of outer mitochondrial membrane 20 (TOMM20), autophagy-associated protein p62, microtubule-associated protein light chain 3 (LC3), cysteinyl aspartate-specific proteinase-9 (Caspase-9), B-cell lymphoma 2-associated protein X (Bax), and cytochrome C (Cyt C). ResultsCompared with the sham group, the model group exhibited increased infarct volume (P<0.01) and neurological deficit scores (P<0.01), neuronal structure was disrupted with reduced Nissl bodies. (P<0.01), mitochondrial swelling/fragmentation, decreased PINK1/LETM1 co-localization (P<0.01), upregulated protein levels of LC3Ⅱ/LC3Ⅰ, TOMM20, Caspase-9, Bax, and Cyt C (P<0.01), downregulated protein level of p62 (P<0.05), weakened PC12 viability (P<0.01), and elevated mitochondrial calcium level (P<0.01). Compared with the model group, THSG and SAS groups showed reduced infarct volumes (P<0.05,P<0.01) and neurological deficit scores (P<0.05,P<0.01), mitigated mitochondrial damage, and increased PINK1/LETM1 co-localization (P<0.01). Medium/high-dose THSG and SAS alleviated the neurological damage, increased Nissl bodies (P<0.05,P<0.01), downregulated the protein levels of p62, TOMM20, Caspase-9, Bax, and Cyt C (P<0.05,P<0.01), and elevated the LC3Ⅱ/LC3Ⅰ level (P<0.05,P<0.01). High-dose THSG enhanced PC12 cell viability (P<0.01), increased PINK1/LETM1 co-localization (P<0.01), and reduced mitochondrial calcium (P<0.01). ConclusionTHSG may exert the neuroprotective effect on CI/R injury by activating the PINK1-LETM1 signaling pathway, reducing the mitochondrial calcium overload, and promoting mitophagy.
3.Chlorinated perfluoroalkyl ether sulfonate impairs proliferation and differentiation of neural stem cells via oxidative stress
Yaxin HAN ; Longfei FENG ; Zhijun ZHOU ; Xiuli CHANG
Journal of Environmental and Occupational Medicine 2025;42(6):684-690
Background Chlorinated perfluoroalkyl ether sulfonate Cl-PFAES, trade name F-53B, a novel per- and polyfluoroalkyl substance (PFAS), has been shown to induce multi-organ toxicity in humans and cross the blood-brain barrier. However, its toxic effects and underlying mechanisms on neural stem cells (NSCs) remain unclear. Objective To investigate the impact of F-53B on NSCs proliferation and differentiation through oxidative stress and explore its potential molecular mechanisms in associations with mitochondrial function damage and the expression of autophagy-related gene (PINK1/Parkin). Methods Primary NSCs isolated from neonatal C57BL/6 mice were used as a model and exposed to F-53B at concentrations of 0, 33, or 100 μmol·L−1 for 24 h. Cell viability was assessed using the cell counting kit-8 (CCK-8) assay, while proliferation was evaluated by the 5-ethynyl-2’-deoxyuridine (EdU) incorporation assay. Immunofluorescence staining was performed to observe differentiation phenotypes. Intracellular and mitochondrial reactive oxygen species (ROS) levels were quantified using dihydroethidium (DHE) and MitoSOX probes, respectively. Mitochondrial morphology was observed using MitoTracker Green. ATP level was measured with a commercial kit. Additionally, real-time quantitative polymerase chain reaction (qPCR) was conducted to quantify the expression of PINK1 and Parkin genes. Results Exposure to 100 μmol·L⁻¹ F-53B significantly reduced cell viability to 93.6% of the control group (P<0.01), and decreased the proportion of EdU⁺ cells (P<0.01), indicating proliferation inhibition. The differentiation analysis showed a reduction in neuronal generation, axonal shortening, and an increase in astrocytes. The 100 μmol·L−1 F-53B exposure elevated intracellular ROS to 122% (P<0.01) and mitochondrial ROS (MitoROS) to 135% (P<0.001) of the control levels, leading to mitochondrial fragmentation. The ATP levels after the F-53B exposure decreased to 62.4% relative to the control group (P<0.001). Furthermore, the mRNA expression levels of PINK1 and Par after the F-53B exposure were notably reduced (P<0.05). Conclusion F-53B may induce oxidative stress, thereby disrupting mitochondrial morphology and function while inhibiting the PINK1/Parkin-mediated mitophagy pathway, ultimately leading to impaired neural stem cell proliferation and abnormal differentiation. This study provides new insights into the neurotoxicity mechanisms of F-53B.
4.Levels and influencing factors of perfluorinated and polyfluoroalkyl substances in umbilical cord serum from Sheyang Mini Birth Cohort Study, Jiangsu Province
Ruonan TAN ; Zheng WANG ; Jiming ZHANG ; Yiming DAI ; Jianqiu GUO ; Xiaojuan QI ; Dasheng LU ; Xiuli CHANG ; Chunhua WU ; Zhijun ZHOU
Journal of Environmental and Occupational Medicine 2024;41(8):841-848
Background Perfluorinated and polyfluoroalkyl substances (PFAS), a large group of emerging pollutants, are ubiquitous in the ecological environment. Their multiple organ toxic effects on human body are reported. Understanding the exposure level of PFAS in cord serum and associated influencing factors can provide scientific evidence for studying maternal and newborn health effects and risk regulation. Objective To explore the exposure levels of PFAS in cord serum and potential impact factors. Methods This study was based on the maternal and infant database and the cord serum sample bank of the Sheyang Mini Birth Cohort Study (SMBCS) established in 2009. A self-designed questionnaire was used to collect information on sociodemographic characteristics, living environment, and lifestyle of mothers during pregnancy. A total of
5.Modified Xiaoyaosan Alleviates Depression-like Behaviors by Regulating Activation of Hippocampal Microglia Cells in Rat Model of Juvenile Depression
Jiayi SHI ; Yun XIANG ; Ziyang ZHOU ; Dahua WU ; Feng QIU ; Chang LEI ; Hongyu ZENG ; Kaimei TAN ; Hongqing ZHAO ; Dong YANG ; Yuhong WANG ; Pengxiao GUO ; Xiuli ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(5):46-56
ObjectiveTo investigate the mechanism of Baihuan Xiaoyao Decoction (Xiaoyaosan added with Lilii Bulbus and Albiziae Cortex) in alleviating depression-like behaviors of juvenile rats by regulating the polarization of microglia. MethodSixty juvenile SD rats were randomized into normal control, model, fluoxetine, and low-, medium-, and high-dose (5.36, 10.71, 21.42 g·kg-1, respectively) Baihuan Xiaoyao decoction groups. The rat model of juvenile depression was established by chronic unpredictable mild stress (CUMS). The sucrose preference test (SPT) was carried out to examine the sucrose preference of rats. Forced swimming test (FST) was carried out to measure the immobility time of rats. The open field test (OFT) was conducted to measure the total distance, the central distance, the number of horizontal crossings, and the frequency of rearing. Morris water maze (MWM) was used to measure the escape latency and the number of crossing the platform. The immunofluorescence assay was employed to detect the expression of inducible nitric oxide synthase (iNOS, the polarization marker of M1 microglia) and CD206 (the polarization marker of M2 microglia). Real-time polymerase chain reaction was employed to determine the mRNA levels of iNOS, CD206, pro-inflammatory cytokines [tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6] and anti-inflammatory cytokines (IL-4 and IL-10) in the hippocampus. Western blotting was employed to determine the protein levels of iNOS and CD206 in the hippocampus. The levels of IL-4 and IL-6 in the hippocampus were detected by enzyme-linked immunosorbent assay. ResultCompared with the normal control group, the model rats showed a reduction in sucrose preference (P<0.05), an increase in immobility time (P<0.05), decreased motor and exploratory behaviors (P<0.05), and weakened learning and spatial memory (P<0.05). In addition, the model rats showed up-regulated mRNA and protein levels of iNOS and mRNA levels of IL-1β, IL-6, and TNF-α (P<0.05). Compared with the model group, Baihuan Xiaoyao decoction increased the sucrose preference value (P<0.05), shortened the immobility time (P<0.01), increased the motor and exploratory behaviors (P<0.05), and improved the learning and spatial memory (P<0.01). Furthermore, the decoction down-regulated the positive expression and protein level of iNOS, lowered the levels of TNF-α, IL-1β, and IL-6 (P<0.01), promoted the positive expression of CD206, and elevated the levels of IL-4 and IL-10 (P<0.01) in the hippocampus of the high dose group. Moreover, the high-dose Baihuan Xiaoyao decoction group had higher sucrose preference value (P<0.01), shorter immobility time (P<0.01), longer central distance (P<0.01), stronger learning and spatial memory (P<0.01), higher positive expression and protein level of iNOS (P<0.01), lower levels of TNF-α, IL-1β, and IL-6 (P<0.05, P<0.01), lower positive expression and mRNA level of iNOS (P<0.05), and higher levels of IL-4 and IL-10 (P<0.05, P<0.01) than the fluoxetine group. ConclusionBaihuan Xiaoyao decoction can improve the depression-like behavior of juvenile rats by inhibiting the M1 polarization and promoting the M2 polarization of microglia in the hippocampus.
6.Treatment status of tyrosine kinase inhibitor for newly-diagnosed chronic myeloid leukemia: a domestic multi-centre retrospective real-world study
Xiaoshuai ZHANG ; Bingcheng LIU ; Xin DU ; Yanli ZHANG ; Na XU ; Xiaoli LIU ; Weiming LI ; Hai LIN ; Rong LIANG ; Chunyan CHEN ; Jian HUANG ; Yunfan YANG ; Huanling ZHU ; Ling PAN ; Xiaodong WANG ; Guohui LI ; Zhuogang LIU ; Yanqing ZHANG ; Zhenfang LIU ; Jianda HU ; Chunshui LIU ; Fei LI ; Wei YANG ; Li MENG ; Yanqiu HAN ; Li'e LIN ; Zhenyu ZHAO ; Chuanqing TU ; Caifeng ZHENG ; Yanliang BAI ; Zeping ZHOU ; Suning CHEN ; Huiying QIU ; Lijie YANG ; Xiuli SUN ; Hui SUN ; Li ZHOU ; Zelin LIU ; Danyu WANG ; Jianxin GUO ; Liping PANG ; Qingshu ZENG ; Xiaohui SUO ; Weihua ZHANG ; Yuanjun ZHENG ; Qian JIANG
Chinese Journal of Hematology 2024;45(3):215-224
Objective:To retrospectively analyze the treatment status of tyrosine kinase inhibitors (TKI) in newly diagnosed patients with chronic myeloid leukemia (CML) in China.Methods:Data of chronic phase (CP) and accelerated phase (AP) CML patients diagnosed from January 2006 to December 2022 from 77 centers, ≥18 years old, and receiving initial imatinib, nilotinib, dasatinib or flumatinib-therapy within 6 months after diagnosis in China with complete data were retrospectively interrogated. The choice of initial TKI, current TKI medications, treatment switch and reasons, treatment responses and outcomes as well as the variables associated with them were analyzed.Results:6 893 patients in CP ( n=6 453, 93.6%) or AP ( n=440, 6.4%) receiving initial imatinib ( n=4 906, 71.2%), nilotinib ( n=1 157, 16.8%), dasatinib ( n=298, 4.3%) or flumatinib ( n=532, 7.2%) -therapy. With the median follow-up of 43 ( IQR 22-75) months, 1 581 (22.9%) patients switched TKI due to resistance ( n=1 055, 15.3%), intolerance ( n=248, 3.6%), pursuit of better efficacy ( n=168, 2.4%), economic or other reasons ( n=110, 1.6%). The frequency of switching TKI in AP patients was significantly-higher than that in CP patients (44.1% vs 21.5%, P<0.001), and more AP patients switched TKI due to resistance than CP patients (75.3% vs 66.1%, P=0.011). Multi-variable analyses showed that male, lower HGB concentration and ELTS intermediate/high-risk cohort were associated with lower cytogenetic and molecular responses rate and poor outcomes in CP patients; higher WBC count and initial the second-generation TKI treatment, the higher response rates; Ph + ACA at diagnosis, poor PFS. However, Sokal intermediate/high-risk cohort was only significantly-associated with lower CCyR and MMR rates and the poor PFS. Lower HGB concentration and larger spleen size were significantly-associated with the lower cytogenetic and molecular response rates in AP patients; initial the second-generation TKI treatment, the higher treatment response rates; lower PLT count, higher blasts and Ph + ACA, poorer TFS; Ph + ACA, poorer OS. Conclusion:At present, the vast majority of newly-diagnosed CML-CP or AP patients could benefit from TKI treatment in the long term with the good treatment responses and survival outcomes.
7.Inferring the spinal nerve root segments responsible for innervation of the lower limb muscles by use of magnetic stimulation
Xiuli ZHANG ; Zongyao WU ; Weiwei DENG ; Siyu DONG ; Xiaoran TANG ; Xianli ZHOU ; Lijuan XIE ; Hongliang LIU
Chinese Journal of Physical Medicine and Rehabilitation 2024;46(10):916-922
Objective:To explore the locations of the lumbosacral nerve roots by use of the magnetic stimulation.Methods:Thirty healthy subjects were studied. The projections of the right L 2 to S 1 intervertebral foramina on their body surfaces were determined manually with ultrasound assistance. Magnetic stimulation was applied to different nerve root segments to induce compound muscle action potentials (CMAP) in the vastus medialis, tibialis anterior, and gastrocnemius muscles of the lower limbs. The changes in latency, amplitude, and motor threshold were observed. Results:Magnetic stimulation on the L 2-L 3 segment resulted in a significant direct excitation of the vastus medialis. That on the L 5-S 1 segment evoked a significant direct excitatory effect on the tibialis anterior and gastrocnemius, with a motor threshold below 40%, an amplitude exceeding 1mV, and many effective responses. However, during the magnetic stimulation on the L 4 segment, the amplitude of the vastus medialis was above 1mV, with no significant differences in the number of effective responses among the muscle groups. Moreover, there was a stepwise change in the latency of effective muscle responses to magnetic stimulation at different segments. The CMAP latencies of 12+ ms for the tibialis anterior and 13+ ms for the gastrocnemius indicated activation of the L 5 and L 4 nerve roots, respectively, while those of 6+ ms, 7+ ms, and 8+ ms for the vastus medialis suggested activation of the L 4, L 3, and L 2 nerve roots, respectively. Conclusions:Based on the responses (CMAP latency, amplitude and motor threshold) of the vastus medialis, tibialis anterior and gastrocnemius to magnetic stimulation at different L 2 to S 1 segments, the spinal nerve root segments responsible for innervation can be inferred.
8.Development of a magnetic particle chemiluminescence immunoassay for creatine kinase MM
Shu ZHANG ; Chunyan ZHANG ; Yujun ZHOU ; Xiuli XU ; Yuxuan CHENG ; Yang SHU ; Shiwen WU ; Yaping TIAN
Chinese Journal of Laboratory Medicine 2024;47(6):667-671
Objectives:Aimed to establish a rapid, high-throughput, automated method for determining the creatine kinase (CK-MM) isoform levels.Methods:Magnetic beads labeled with anti-CK-MM antibodies were combined with alkaline phosphatase-based chemiluminescence detection. Clinical and diagnostic performance validation of the assay was determined by analysis of 998 and 75 dried blood spot samples from healthy newborns and Duchenne muscular dystrophy (DMD) patients, respectively, and the CK activity was also determined. The blank and detection limits, cross-reactivity, recovery rate of the method, intra-and inter-assay coefficient, and the hook effect were evaluated.Results:Blank and detection limits were 17.4 and 39.3 ng/ml, respectively. Cross-reactivity toward CK-MB and CK-BB isoforms was 0.2% and 0.02%, respectively. Intra-and inter-assay coefficients of variation were<1%. Mean recovery was 100.32%, with no hook effect in CK-MM levels<50 000 ng/ml. Overall, the mean CK-MM concentrations in newborns and DMD patients were (27.05±0.97) and (3 720±300.5) ng/ml, respectively. A significant positive correlation between the dried blood spot detected CK-MM levels and total CK enzyme activity, evaluated in corresponding serum samples from the 75 DMD patients, was observed ( r=0.91, P<0.001), ?which is in good agreement with the clinical. Conclusions:An assay for rapid quantitative determination of CK-MM that meets clinical newborn screening requirements was established. It had a good value for application.
9.Impacts of cadmium on mouse neural stem cells based on dose-response metabomics
Yixi LI ; Jiming ZHANG ; Qiuyun GU ; Zheng WANG ; Bing ZHANG ; Zhijun ZHOU ; Xiuli CHANG
Journal of Environmental and Occupational Medicine 2023;40(8):892-899
Background Cadmium (Cd) is a ubiquitous and toxic heavy metal that can accumulate in human body. Previous studies have shown that Cd exposure can induce neurotoxicity, but the underlying mechanism remains unclear. Objective To investigate the metabolic impacts of multiple doses of Cd on mouse neural stem cells (NSCs), and to explore the potential mechanism and biomarkers of its neurotoxicity. Methods The NSCs were obtained from the subventricular zone (SVZ) of 1-day-old neonatal C57BL/6 mice. The passage 3 (P3) NSCs were exposed to CdCl2 at designed doses (0, 0.5, 1.0, and 1.5 μmol·L−1). The cells were treated with seven replicates, of which one plate was for cell counting. After 24 h of exposure, the intracellular and extracellular metabolites were extracted respectively and then detected by ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS). The orthogonal partial least-squares discriminant analysis (OPLS-DA) was applied to visualize the alterations of metabolomic profiles and to identify the differential metabolites (DMs) based on their variable importance for the projection (VIP) value >1 and P<0.05. The metabolite set enrichment analysis (MSEA) and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis were performed to recognize the significantly altered metabolite sets and pathways. The dose-response relationships were established and the potential biomarkers of Cd exposure were identified by 10% up-regulated or 10% down-regulated effective concentration (EC) of target metabolites. Results A total of 1201 metabolites were identified in the intracellular metabolomic samples and 1207 for the extracellular metabolomic samples. The intracellular and extracellular metabolome of Cd-treated NSCs were distinct from that of the control group, and the difference grew more distant as the Cd dosage increased. At 0.5, 1.0, and 1.5 μmol·L−1 dosage of Cd, 87, 83, and 185 intracellular DMs and 161, 176, and 166 extracellular DMs were identified, respectively. Within the significantly changed metabolites among the four groups, 176 intracellular DMs and 167 extracellular DMs were identified. Both intracellular and extracellular DMs were enriched in multiple lipid metabolite sets. Intracellular DMs were mainly enriched in taurine and hypotaurine metabolism, glycerophospholipid metabolism, and glycerolipid metabolism pathways. Extracellular DMs changed by Cd were mainly enriched in glycerophospholipid metabolism, steroid hormone biosynthesis, and cysteine and methionine metabolism pathways. Among intracellular DMs, 125 metabolites were fitted with dose-response relationships, of which 108 metabolites showed linear changes with the increase of Cd dosage. And 134 metabolites were fitted with dose-response relationships among extracellular DMs, of which 86 metabolites showed linear changes. The intracellular DMs with low EC values were hypotaurine, ethanolamine, phosphatidylethanolamine, and galactose, while the extracellular DMs with low EC values were acetylcholine and 1,5-anhydrosorbitol. Conclusion Cd treatment can significantly alter the intracellular and extracellular metabolome of mouse NSCs in a dose-dependent manner. The neurotoxicity of Cd may be related to glycerophospholipid metabolism. Acetylcholine, ethanolamine, and phosphatidylethanolamine involved in glycerophospholipid metabolism pathway might be potential biomarkers of Cd-induced neurotoxicity.
10.Associations between urinary paraben levels and obesity of 10-year-old children
Sinan XU ; Jiming ZHANG ; Yiming DAI ; Zheng WANG ; Lei ZHANG ; Jianqiu GUO ; Xiaojuan QI ; Xiuli CHANG ; Dasheng LU ; Chunhua WU ; Zhijun ZHOU
Journal of Environmental and Occupational Medicine 2023;40(7):782-787
Background Parabens, a widely used class of preservatives, are suspected to be potential obesogens as emerging endocrine disrupting chemicals with reproductive and developmental toxicity. Objective To analyze five urinary parabens (PBs) and estimate the associations of exposure to PBs with adiposity measures in 10-year-old school-age children. Methods A total of 471 school-age children aged 10 years from the Sheyang Mini Birth Cohort were enrolled in this study. A questionnaire survey was conducted to collect socio-demographic information, physical activity, and dietary intake. Weight, height, and waist circumference of children were measured, and age- and sex-adjusted body mass index (BMI-Z score) was calculated. Spot urine samples were collected during the follow-up visits. Urinary concentrations of five PBs including methyl-paraben (MeP), ethyl-paraben (EtP), propyl-paraben (PrP), butyl-paraben (BuP), and benzyl-paraben (BzP) were detected by gas chromatography-tandem mass spectrometry (GC-MS/MS). Generalized linear models (GLMs) and Bayesian kernel machine regression (BKMR) models were applied to estimate associations of individual/overall urinary PBs concentrations with BMI Z-score and waist circumference. Results The positive rates of selected five urinary PBs were in the range from 78.98% to 98.94%. The urinary PBs concentrations (geometric mean) were in the range of 0.31-5.43 μg·L−1. The children's BMI Z-score and waist circumference (mean ± standard deviation) were (0.56±1.40) and (67.62±10.07) cm respectively. The GLMs results showed that the urinary BzP concentration was negatively associated with waist circumference (b=−0.08, 95%CI: −0.14, −0.02; P=0.01). In sex-stratified analysis, the urinary concentration of BzP was negatively associated with BMI-Z score (b=−0.59, 95%CI: −0.88, −0.30; P<0.001) and waist circumference (b=−0.80, 95%CI: −1.23, −0.37; P<0.001) in boys, but not in girls. The BKMR results also found significant negative correlations of urinary BzP concentrations with BMI-Z score and waist circumference, which were consistent with the GLM results. Conclusion The selected 10-year-old children are extensively exposed to PBs in the study area. Furthermore, childhood PBs exposure may have potential impacts on childhood adiposity measures with sex-specific effects.

Result Analysis
Print
Save
E-mail