1.Data Mining of Medication Rules for the Treatment of Atopic Dermatitis the Children by Chinese Medical Master XUAN Guo-Wei
Jin-Dian DONG ; Cheng-Cheng GE ; Yue PEI ; Shu-Qing XIONG ; Jia-Fen LIANG ; Qin LIU ; Xiu-Mei MO ; Hong-Yi LI
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(3):752-758
		                        		
		                        			
		                        			Objective Data mining technology was used to mine the medication rules of the prescriptions used in the treatment of pediatric atopic dermatitis by Chinese medical master XUAN Guo-Wei.Methods The medical records of effective cases of pediatric atopic dermatitis treated by Professor XUAN Guo-Wei at outpatient clinic were collected,and then the medical data were statistically analyzed using frequency statistics,association rule analysis and cluster analysis.Results A total of 242 prescriptions were included,involving 101 Chinese medicinals.There were 23 commonly-used herbs,and the 16 high-frequency herbs(frequency>100 times)were Glycyrrhizae Radix et Rhizoma,Saposhnikoviae Radix,Glehniae Radix,Perillae Folium,Ophiopogonis Radix,Cynanchi Paniculati Radix et Rhizoma,Microctis Folium,Dictamni Cortex,Scrophulariae Radix,Coicis Semen,Cicadae Periostracum,Lilii Bulbus,Rehmanniae Radix,Kochiae Fructus,Sclerotium Poriae Pararadicis,and Euryales Semen.The analysis of the medicinal properties showed that most of the herbs were sweet and cold,and mainly had the meridian tropism of the spleen,stomach and liver meridians.The association rule analysis yielded 24 commonly-used drug combinations and 20 association rules.Cluster analysis yielded 2 core drug combinations.Conclusion For the treatment of pediatric atopic dermatitis,Professor XUAN Guo-Wei focuses on the clearing,supplementing and harmonizing therapies,and the medication principle of"supporting the healthy-qi to eliminate the pathogen,and balancing the yin and yang"is applied throughout the treatment.
		                        		
		                        		
		                        		
		                        	
2.Content determination of seventeen amino acids in Gualoupi Injection and its intermediates and research on their change laws
Xiang TAO ; Jing-Xian ZHANG ; Qing HU ; Jian SUN ; Ying DONG ; Jin-Guo DING ; Hong YU ; Ying-Ying SHEN ; Xiu-Hong MAO ; Shen JI
Chinese Traditional Patent Medicine 2024;46(3):709-717
		                        		
		                        			
		                        			AIM To determine the contents of aspartic acid,glutamic acid,serine,glycine,threonine,citrulline,arginine,alanine,γ-amino-butyric acid,tyrosine,valine,phenlalanine,isoleucine,ornithine,leucine,lysine and proline in Gualoupi Injection and its intermediates,and to analyze their change laws.METHODS The OPA-FMOC online derivatization analysis was performed on a 45℃ thermostatic Waters XBridge C18 column(4.6 mm×100 mm,3.5 μm),with the mobile phase comprising of phosphate buffer solution-[methanol-acetonitrile-water(45 : 45 : 10)]flowing at 1 mL/min in a gradient elution manner,and the detection wavelengths were set at 262,338 nm.Principal component analysis and heatmap analysis were adopted in chemical pattern recognition for the corresponding intermediates in ten processes of six batches of samples.RESULTS Seventeen amino acids showed good linear relationships within their own ranges(R2>0.998 0),whose average recoveries were 83.4%-119.5%with the RSDs of 0.91%-7.94%.Different batches of samples in the same process were clustered,and the corresponding intermediates in different processed were clustered into three groups.Alcohol precipitation and cation exchange column demonstrated the biggest influences on amino acid composition.CONCLUSION This experiment can provide important references for the critical factors on quality control of Gualoupi Injection,thus ensure the stability and uniformity of final product.
		                        		
		                        		
		                        		
		                        	
3.Inhibition effect of kudinoside D on lipid deposition in hepatocytes and its mechanism
Cai-Cai XUE ; Yan-Xiang LI ; Xiu-Mei QIAO ; Jin-Yong PENG ; Jin-Hong WANG
Chinese Pharmacological Bulletin 2024;40(9):1688-1694
		                        		
		                        			
		                        			Aim To investigate the effect of kudinoside D(KD-D)on palmitic acid(PA)-induced lipid depo-sition in hepatocytes.Methods Mouse hepatocytes AML-12 were cultured and randomly divided into the Control group,PA group,PA+KD-D 20 μmol·L-1 group,PA+KD-D 40 μmol·L-1 group and PA+KD-D 80 μmol·L-1 group.AML-12 cells in PA and KD-D groups were treated with PA(0.4 mmol·L-1)for 24 h.AML-12 cells in KD-D groups were incubated with KD-D for 1 h before stimulation with PA.MTT as-say was used to detect cell survival rate,oil red O stai-ning and transmission electron microscopy were used to detect lipid deposition in cells,DCFH-DA fluorescence probe was used to detect intracellular reactive oxygen species(ROS)and MitoSOX mitochondrial superoxide red fluorescence probe was used to detect mitochondrial superoxide content in cells.Results KD-D at differ-ent concentrations improved PA-induced changes in cell morphology significantly.Compared with the Con-trol group,cells in PA group showed a significant in-crease in intracellular lipid droplets.Compared with PA group,the red lipid droplets in KD-D groups de-creased.The results of transmission electron microsco-py demonstrated that KD-D reduced PA-induced hepat-ic steatosis and improved ultrastructure.In addition,KD-D significantly decreased PA-induced cellular ROS level(P<0.01)and reduced mitochondrial superox-ide content(P<0.01).Conclusion KD-D inhibits PA-induced lipid deposition by regulating the cellular oxidative stress levels in AML-12 cells.
		                        		
		                        		
		                        		
		                        	
4.Research Progress of Biomimetic Imprinting Affinity Analysis Technique
Zhao-Zhou LI ; Yu-Hua WEI ; Xiao-Chong ZHANG ; Xiu-Jin CHEN ; Yao WANG ; Hua-Wei NIU ; Fang LI ; Hong-Li GAO ; Hui-Chun YU ; Yun-Xia YUAN
Chinese Journal of Analytical Chemistry 2024;52(6):763-777
		                        		
		                        			
		                        			Molecular imprinting is a biomimetic technique that simulates the specific recognition of biological macromolecules such as antibody. Based on molecular imprinting and high-specificity affinity analysis,the biomimetic imprinting affinity analysis (BIA) possesses many advantages such as high sensitivity,strong tolerance,good specificity and low cost,and thus,it has shown excellent prospects in food safety detection,pharmaceutical analysis and environmental pollution monitoring. In this review,the construction methods of recognition interfaces for BIA were summarized,including bulk polymerization,electro-polymerization and surface molecular imprinting. The application of molecularly imprinted polymers in different analysis methods,such as radiolabeled affinity analysis,enzyme-labeled affinity analysis,fluorescence-labeled affinity analysis,chemiluminescence affinity analysis and electrochemical immunosensor was mainly discussed. Furthermore,the challenges and future development trends of BIA in practical application were elucidated. This review might provide new reference ideas and technical supports for the further development of BIA technique.
		                        		
		                        		
		                        		
		                        	
5.A multicenter study of neonatal stroke in Shenzhen,China
Li-Xiu SHI ; Jin-Xing FENG ; Yan-Fang WEI ; Xin-Ru LU ; Yu-Xi ZHANG ; Lin-Ying YANG ; Sheng-Nan HE ; Pei-Juan CHEN ; Jing HAN ; Cheng CHEN ; Hui-Ying TU ; Zhang-Bin YU ; Jin-Jie HUANG ; Shu-Juan ZENG ; Wan-Ling CHEN ; Ying LIU ; Yan-Ping GUO ; Jiao-Yu MAO ; Xiao-Dong LI ; Qian-Shen ZHANG ; Zhi-Li XIE ; Mei-Ying HUANG ; Kun-Shan YAN ; Er-Ya YING ; Jun CHEN ; Yan-Rong WANG ; Ya-Ping LIU ; Bo SONG ; Hua-Yan LIU ; Xiao-Dong XIAO ; Hong TANG ; Yu-Na WANG ; Yin-Sha CAI ; Qi LONG ; Han-Qiang XU ; Hui-Zhan WANG ; Qian SUN ; Fang HAN ; Rui-Biao ZHANG ; Chuan-Zhong YANG ; Lei DOU ; Hui-Ju SHI ; Rui WANG ; Ping JIANG ; Shenzhen Neonatal Data Network
Chinese Journal of Contemporary Pediatrics 2024;26(5):450-455
		                        		
		                        			
		                        			Objective To investigate the incidence rate,clinical characteristics,and prognosis of neonatal stroke in Shenzhen,China.Methods Led by Shenzhen Children's Hospital,the Shenzhen Neonatal Data Collaboration Network organized 21 institutions to collect 36 cases of neonatal stroke from January 2020 to December 2022.The incidence,clinical characteristics,treatment,and prognosis of neonatal stroke in Shenzhen were analyzed.Results The incidence rate of neonatal stroke in 21 hospitals from 2020 to 2022 was 1/15 137,1/6 060,and 1/7 704,respectively.Ischemic stroke accounted for 75%(27/36);boys accounted for 64%(23/36).Among the 36 neonates,31(86%)had disease onset within 3 days after birth,and 19(53%)had convulsion as the initial presentation.Cerebral MRI showed that 22 neonates(61%)had left cerebral infarction and 13(36%)had basal ganglia infarction.Magnetic resonance angiography was performed for 12 neonates,among whom 9(75%)had involvement of the middle cerebral artery.Electroencephalography was performed for 29 neonates,with sharp waves in 21 neonates(72%)and seizures in 10 neonates(34%).Symptomatic/supportive treatment varied across different hospitals.Neonatal Behavioral Neurological Assessment was performed for 12 neonates(33%,12/36),with a mean score of(32±4)points.The prognosis of 27 neonates was followed up to around 12 months of age,with 44%(12/27)of the neonates having a good prognosis.Conclusions Ischemic stroke is the main type of neonatal stroke,often with convulsions as the initial presentation,involvement of the middle cerebral artery,sharp waves on electroencephalography,and a relatively low neurodevelopment score.Symptomatic/supportive treatment is the main treatment method,and some neonates tend to have a poor prognosis.
		                        		
		                        		
		                        		
		                        	
6.Research progress on the relationship between ciliary muscle and myopia
Xiu-Ping TANG* ; Zhi-Jin TANG* ; Zai-Hong HUANG ; Heng LI
International Eye Science 2023;23(3):439-442
		                        		
		                        			
		                        			 As a key ocular structure, ciliary muscle has a major role in accommodating both eye and aqueous humor drainage. Recent studies have found that the position and shape of ciliary muscles in myopia are significantly different from those in emmetropia or hyperopia, and the differences of ciliary muscle may affect the progress of myopia by altering ocular accommodation, choroidal tension and intraocular pressure. The present evidence indicating that the thickening of posterior ciliary muscle was associated with the development of myopia, but the mechanism has not been clearly confirmed. This paper summarizes the relationship between the differences of ciliary muscle and myopia, and the possible mechanism of myopia changes affected by ciliary muscle, so as to provide reference for follow-up research. 
		                        		
		                        		
		                        		
		                        	
		                				7.Cloning and functional analysis of IPI  gene from Fritillaria unibracteata  Hsiao et K. C. Hsia.
		                			
		                			Jiao CHEN ; Si-min SONG ; Jie TANG ; Jin-xiu XIN ; Qian ZHANG ; Hong-jie ZHAO ; Xin CHEN ; Jia-yu ZHOU ; Hai LIAO
Acta Pharmaceutica Sinica 2023;58(2):447-453
		                        		
		                        			
		                        			 An open reading frame (ORF) of isopentenyl-diphosphate delta isomerase gene (
		                        		
		                        	
8.Simultaneously quantitative analysis of 35 components in gualoupi injection using hydrophilic interaction liquid chromatography tandem mass spectrometry
Xiang TAO ; Jing-xian ZHANG ; Qing HU ; Jian SUN ; Ying DONG ; Jin-guo DING ; Hong YU ; Ying-ying SHEN ; Xiu-hong MAO ; Shen JI
Acta Pharmaceutica Sinica 2023;58(5):1293-1300
		                        		
		                        			
		                        			 A hydrophilic interaction chromatography tandem mass spectrometry method was developed for simultaneous quantification of 35 components in gualoupi injection. The analytes were separated with an ACQUITY XBridge Amide column using 20 mmol·L-1 ammonium formate aqueous solution (pH 3.0) as mobile phase A and 20 mmol·L-1 ammonium formate (pH 3.0)∶acetonitrile (1∶9) as mobile phase B for gradient elution. Mass spectrometry with dynamic multiple reaction monitoring and external standard method were used for quantitative analysis. A total of 35 components were determined in 10 batches of gualoupi injection. The results showed that the 35 compounds had a good linear relationship within their respective concentration ranges with the correlation coefficients (
		                        		
		                        	
9.Effect and mechanism of Bovis Calculus on ulcerative colitis by inhibiting IL-17/IL-17RA/Act1 signaling pathway.
Jian-Mei YUAN ; Dan-Ni LU ; Jia-Jun WANG ; Zhuo XU ; Yong LI ; Mi-Hong REN ; Jin-Xiu LI ; Dao-Yin GONG ; Jian WANG
China Journal of Chinese Materia Medica 2023;48(9):2500-2511
		                        		
		                        			
		                        			This study aimed to elucidate the effect and underlying mechanism of Bovis Calculus in the treatment of ulcerative colitis(UC) through network pharmacological prediction and animal experimental verification. Databases such as BATMAN-TCM were used to mine the potential targets of Bovis Calculus against UC, and the pathway enrichment analysis was conducted. Seventy healthy C57BL/6J mice were randomly divided into a blank group, a model group, a solvent model(2% polysorbate 80) group, a salazosulfapyridine(SASP, 0.40 g·kg~(-1)) group, and high-, medium-, and low-dose Bovis Calculus Sativus(BCS, 0.20, 0.10, and 0.05 g·kg~(-1)) groups according to the body weight. The UC model was established in mice by drinking 3% dextran sulfate sodium(DSS) solution for 7 days. The mice in the groups with drug intervention received corresponding drugs for 3 days before modeling by gavage, and continued to take drugs for 7 days while modeling(continuous administration for 10 days). During the experiment, the body weight of mice was observed, and the disease activity index(DAI) score was recorded. After 7 days of modeling, the colon length was mea-sured, and the pathological changes in colon tissues were observed by hematoxylin-eosin(HE) staining. The levels of tumor necrosis factor-α(TNF-α), interleukin-1β(IL-1β), interleukin-6(IL-6), and interleukin-17(IL-17) in colon tissues of mice were detected by enzyme-linked immunosorbent assay(ELISA). The mRNA expression of IL-17, IL-17RA, Act1, TRAF2, TRAF5, TNF-α, IL-6, IL-1β, CXCL1, CXCL2, and CXCL10 was evaluated by real-time polymerase chain reaction(RT-PCR). The protein expression of IL-17, IL-17RA, Act1, p-p38 MAPK, and p-ERK1/2 was investigated by Western blot. The results of network pharmacological prediction showed that Bovis Calculus might play a therapeutic role through the IL-17 signaling pathway and the TNF signaling pathway. As revealed by the results of animal experiments, on the 10th day of drug administration, compared with the solvent model group, all the BCS groups showed significantly increased body weight, decreased DAI score, increased colon length, improved pathological damage of colon mucosa, and significantly inhibited expression of TNF-α,IL-6,IL-1β, and IL-17 in colon tissues. The high-dose BCS(0.20 g·kg~(-1)) could significantly reduce the mRNA expression levels of IL-17, Act1, TRAF2, TRAF5, TNF-α, IL-6, IL-1β, CXCL1, and CXCL2 in colon tissues of UC model mice, tend to down-regulate mRNA expression levels of IL-17RA and CXCL10, significantly inhibit the protein expression of IL-17RA,Act1,and p-ERK1/2, and tend to decrease the protein expression of IL-17 and p-p38 MAPK. This study, for the first time from the whole-organ-tissue-molecular level, reveals that BCS may reduce the expression of pro-inflammatory cytokines and chemokines by inhibiting the IL-17/IL-17RA/Act1 signaling pathway, thereby improving the inflammatory injury of colon tissues in DSS-induced UC mice and exerting the effect of clearing heat and removing toxins.
		                        		
		                        		
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Colitis, Ulcerative/metabolism*
		                        			;
		                        		
		                        			Tumor Necrosis Factor-alpha/metabolism*
		                        			;
		                        		
		                        			Interleukin-6/metabolism*
		                        			;
		                        		
		                        			Interleukin-17/pharmacology*
		                        			;
		                        		
		                        			TNF Receptor-Associated Factor 2/pharmacology*
		                        			;
		                        		
		                        			TNF Receptor-Associated Factor 5/metabolism*
		                        			;
		                        		
		                        			Mice, Inbred C57BL
		                        			;
		                        		
		                        			Signal Transduction
		                        			;
		                        		
		                        			Colon
		                        			;
		                        		
		                        			p38 Mitogen-Activated Protein Kinases/metabolism*
		                        			;
		                        		
		                        			RNA, Messenger/metabolism*
		                        			;
		                        		
		                        			Dextran Sulfate/metabolism*
		                        			;
		                        		
		                        			Disease Models, Animal
		                        			
		                        		
		                        	
10.Application of membrane anatomy in hepatopancreatobiliary and splenic surgery.
Shu You PENG ; Yun JIN ; Jiang Tao LI ; Yuan Quan YU ; Xiu Jun CAI ; De Fei HONG ; Xiao LIANG ; Ying Bin LIU ; Xu An WANG
Chinese Journal of Surgery 2023;61(7):535-539
		                        		
		                        			
		                        			Understanding of a variety of membranous structures throughout the body,such as the fascia,the serous membrane,is of great importance to surgeons. This is especially valuable in abdominal surgery. With the rise of membrane theory in recent years,membrane anatomy has been widely recognized in the treatment of abdominal tumors,especially of gastrointestinal tumors. In clinical practice. The appropriate choice of intramembranous or extramembranous anatomy is appropriate to achieve precision surgery. Based on the current research results,this article described the application of membrane anatomy in the field of hepatobiliary surgery,pancreatic surgery,and splenic surgery,with the aim of blazed the path from modest beginnings.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Mesentery/surgery*
		                        			;
		                        		
		                        			Digestive System Surgical Procedures
		                        			;
		                        		
		                        			Fascia/anatomy & histology*
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail