1.Atlantodentoplasty using the anterior retropharyngeal approach for treating irreducible atlantoaxial dislocation with atlantodental bony obstruction: a retrospective study
Jia SHAO ; Yun Peng HAN ; Yan Zheng GAO ; Kun GAO ; Ke Zheng MAO ; Xiu Ru ZHANG
Asian Spine Journal 2025;19(1):54-63
		                        		
		                        			 Methods:
		                        			The clinical data of 26 patients diagnosed with irreducible atlantoaxial dislocation complicated by atlantodental bony obstruction were analyzed retrospectively. All patients underwent anterior retropharyngeal atlantodentoplasty, followed by posterior occipitocervical fusion. Details including surgical duration and blood loss volume were recorded. Radiographic data such as the anterior atlantodental interval, O–C2 angle, space available for the cord, clivus–canal angle, and cervical medullary angle, and clinical data including the Japanese Orthopedic Association (JOA) score were assessed. The fusion time of the grafted bone and the development of complications were examined. 
		                        		
		                        			Results:
		                        			In patients undergoing anterior retropharyngeal atlantodentoplasty, the surgical duration and blood loss volume were 120.1±16.4 minutes and 100.6±33.5 mL, respectively. The anterior atlantodental interval decreased significantly after the surgery (p <0.001). The O–C2 angle, space available for the cord, clivus–canal angle, and cervical medullary angle increased significantly after the surgery (p <0.001). The JOA score during the latest follow-up significantly increased compared with that before the surgery (p <0.001). The improvement rate of the JOA score was 80.8%±18.1%. The fusion time of the grafted bone was 3–8 months, with an average of 5.7±1.5 months. In total, 11 patients presented with postoperative dysphagia and three with irritating cough. However, none of them exhibited other major complications. 
		                        		
		                        			Conclusions
		                        			Anterior retropharyngeal atlantodentoplasty can anatomically reduce the atlantoaxial joint with a satisfactory clinical outcome in patients with irreducible atlantoaxial dislocation with atlantodental bony obstruction. 
		                        		
		                        		
		                        		
		                        	
2.Atlantodentoplasty using the anterior retropharyngeal approach for treating irreducible atlantoaxial dislocation with atlantodental bony obstruction: a retrospective study
Jia SHAO ; Yun Peng HAN ; Yan Zheng GAO ; Kun GAO ; Ke Zheng MAO ; Xiu Ru ZHANG
Asian Spine Journal 2025;19(1):54-63
		                        		
		                        			 Methods:
		                        			The clinical data of 26 patients diagnosed with irreducible atlantoaxial dislocation complicated by atlantodental bony obstruction were analyzed retrospectively. All patients underwent anterior retropharyngeal atlantodentoplasty, followed by posterior occipitocervical fusion. Details including surgical duration and blood loss volume were recorded. Radiographic data such as the anterior atlantodental interval, O–C2 angle, space available for the cord, clivus–canal angle, and cervical medullary angle, and clinical data including the Japanese Orthopedic Association (JOA) score were assessed. The fusion time of the grafted bone and the development of complications were examined. 
		                        		
		                        			Results:
		                        			In patients undergoing anterior retropharyngeal atlantodentoplasty, the surgical duration and blood loss volume were 120.1±16.4 minutes and 100.6±33.5 mL, respectively. The anterior atlantodental interval decreased significantly after the surgery (p <0.001). The O–C2 angle, space available for the cord, clivus–canal angle, and cervical medullary angle increased significantly after the surgery (p <0.001). The JOA score during the latest follow-up significantly increased compared with that before the surgery (p <0.001). The improvement rate of the JOA score was 80.8%±18.1%. The fusion time of the grafted bone was 3–8 months, with an average of 5.7±1.5 months. In total, 11 patients presented with postoperative dysphagia and three with irritating cough. However, none of them exhibited other major complications. 
		                        		
		                        			Conclusions
		                        			Anterior retropharyngeal atlantodentoplasty can anatomically reduce the atlantoaxial joint with a satisfactory clinical outcome in patients with irreducible atlantoaxial dislocation with atlantodental bony obstruction. 
		                        		
		                        		
		                        		
		                        	
3.Atlantodentoplasty using the anterior retropharyngeal approach for treating irreducible atlantoaxial dislocation with atlantodental bony obstruction: a retrospective study
Jia SHAO ; Yun Peng HAN ; Yan Zheng GAO ; Kun GAO ; Ke Zheng MAO ; Xiu Ru ZHANG
Asian Spine Journal 2025;19(1):54-63
		                        		
		                        			 Methods:
		                        			The clinical data of 26 patients diagnosed with irreducible atlantoaxial dislocation complicated by atlantodental bony obstruction were analyzed retrospectively. All patients underwent anterior retropharyngeal atlantodentoplasty, followed by posterior occipitocervical fusion. Details including surgical duration and blood loss volume were recorded. Radiographic data such as the anterior atlantodental interval, O–C2 angle, space available for the cord, clivus–canal angle, and cervical medullary angle, and clinical data including the Japanese Orthopedic Association (JOA) score were assessed. The fusion time of the grafted bone and the development of complications were examined. 
		                        		
		                        			Results:
		                        			In patients undergoing anterior retropharyngeal atlantodentoplasty, the surgical duration and blood loss volume were 120.1±16.4 minutes and 100.6±33.5 mL, respectively. The anterior atlantodental interval decreased significantly after the surgery (p <0.001). The O–C2 angle, space available for the cord, clivus–canal angle, and cervical medullary angle increased significantly after the surgery (p <0.001). The JOA score during the latest follow-up significantly increased compared with that before the surgery (p <0.001). The improvement rate of the JOA score was 80.8%±18.1%. The fusion time of the grafted bone was 3–8 months, with an average of 5.7±1.5 months. In total, 11 patients presented with postoperative dysphagia and three with irritating cough. However, none of them exhibited other major complications. 
		                        		
		                        			Conclusions
		                        			Anterior retropharyngeal atlantodentoplasty can anatomically reduce the atlantoaxial joint with a satisfactory clinical outcome in patients with irreducible atlantoaxial dislocation with atlantodental bony obstruction. 
		                        		
		                        		
		                        		
		                        	
4.Diagnostic Techniques and Risk Prediction for Cardiovascular-kidney-metabolic (CKM) Syndrome
Song HOU ; Lin-Shan ZHANG ; Xiu-Qin HONG ; Chi ZHANG ; Ying LIU ; Cai-Li ZHANG ; Yan ZHU ; Hai-Jun LIN ; Fu ZHANG ; Yu-Xiang YANG
Progress in Biochemistry and Biophysics 2025;52(10):2585-2601
		                        		
		                        			
		                        			Cardiovascular disease (CVD), chronic kidney disease (CKD), and metabolic disorders are the 3 major chronic diseases threatening human health, which are closely related and often coexist, significantly increasing the difficulty of disease management. In response, the American Heart Association (AHA) proposed a novel disease concept of “cardiovascular-kidney-metabolic (CKM) syndrome” in October 2023, which has triggered widespread concern about the co-treatment of heart and kidney diseases and the prevention and treatment of metabolic disorders around the world. This review posits that effectively managing CKM syndrome requires a new and multidimensional paradigm for diagnosis and risk prediction that integrates biological insights, advanced technology and social determinants of health (SDoH). We argue that the core pathological driver is a “metabolic toxic environment”, fueled by adipose tissue dysfunction and characterized by a vicious cycle of systemic inflammation and oxidative stress, which forms a common pathway to multi-organ injury. The at-risk population is defined not only by biological characteristics but also significantly impacted by adverse SDoH, which can elevate the risk of advanced CKM by a factor of 1.18 to 3.50, underscoring the critical need for equity in screening and care strategies. This review systematically charts the progression of diagnostic technologies. In diagnostics, we highlight a crucial shift from single-marker assessments to comprehensive multi-marker panels. The synergistic application of traditional biomarkers like NT-proBNP (reflecting cardiac stress) and UACR (indicating kidney damage) with emerging indicators such as systemic immune-inflammation index (SII) and Klotho protein facilitates a holistic evaluation of multi-organ health. Furthermore, this paper explores the pivotal role of non-invasive monitoring technologies in detecting subclinical disease. Techniques like multi-wavelength photoplethysmography (PPG) and impedance cardiography (ICG) provide a real-time window into microcirculatory and hemodynamic status, enabling the identification of early, often asymptomatic, functional abnormalities that precede overt organ failure. In imaging, progress is marked by a move towards precise, quantitative evaluation, exemplified by artificial intelligence-powered quantitative computed tomography (AI-QCT). By integrating AI-QCT with clinical risk factors, the predictive accuracy for cardiovascular events within 6 months significantly improves, with the area under the curve (AUC) increasing from 0.637 to 0.688, demonstrating its potential for reclassifying risk in CKM stage 3. In the domain of risk prediction, we trace the evolution from traditional statistical tools to next-generation models. The new PREVENT equation represents a major advancement by incorporating key kidney function markers (eGFR, UACR), which can enhance the detection rate of CKD in primary care by 20%-30%. However, we contend that the future lies in dynamic, machine learning-based models. Algorithms such as XGBoost have achieved an AUC of 0.82 for predicting 365-day cardiovascular events, while deep learning models like KFDeep have demonstrated exceptional performance in predicting kidney failure risk with an AUC of 0.946. Unlike static calculators, these AI-driven tools can process complex, multimodal data and continuously update risk profiles, paving the way for truly personalized and proactive medicine. In conclusion, this review advocates for a paradigm shift toward a holistic and technologically advanced framework for CKM management. Future efforts must focus on the deep integration of multimodal data, the development of novel AI-driven biomarkers, the implementation of refined SDoH-informed interventions, and the promotion of interdisciplinary collaboration to construct an efficient, equitable, and effective system for CKM screening and intervention. 
		                        		
		                        		
		                        		
		                        	
5.Electroacupuncture Promotes Functional Recovery after Facial Nerve Injury in Rats by Regulating Autophagy via GDNF and PI3K/mTOR Signaling Pathway.
Jun-Peng YAO ; Xiu-Mei FENG ; Lu WANG ; Yan-Qiu LI ; Zi-Yue ZHU ; Xiang-Yun YAN ; Yu-Qing YANG ; Ying LI ; Wei ZHANG
Chinese journal of integrative medicine 2024;30(3):251-259
		                        		
		                        			OBJECTIVE:
		                        			To explore the mechanism of electroacupuncture (EA) in promoting recovery of the facial function with the involvement of autophagy, glial cell line-derived neurotrophic factor (GDNF), and phosphatidylinositol-3-kinase (PI3K)/mammalian target of rapamycin (mTOR) signaling pathway.
		                        		
		                        			METHODS:
		                        			Seventy-two male Sprague-Dawley rats were randomly allocated into the control, sham-operated, facial nerve injury (FNI), EA, EA+3-methyladenine (3-MA), and EA+GDNF antagonist groups using a random number table, with 12 rats in each group. An FNI rat model was established with facial nerve crushing method. EA intervention was conducted at Dicang (ST 4), Jiache (ST 6), Yifeng (SJ 17), and Hegu (LI 4) acupoints for 2 weeks. The Simone's 10-Point Scale was utilized to monitor the recovery of facial function. The histopathological evaluation of facial nerves was performed using hematoxylin-eosin (HE) staining. The levels of Beclin-1, light chain 3 (LC3), and P62 were detected by immunohistochemistry (IHC), immunofluorescence, and reverse transcription-polymerase chain reaction, respectively. Additionally, IHC was also used to detect the levels of GDNF, Rai, PI3K, and mTOR.
		                        		
		                        			RESULTS:
		                        			The facial functional scores were significantly increased in the EA group than the FNI group (P<0.05 or P<0.01). HE staining showed nerve axons and myelin sheaths, which were destroyed immediately after the injury, were recovered with EA treatment. The expressions of Beclin-1 and LC3 were significantly elevated and the expression of P62 was markedly reduced in FNI rats (P<0.01); however, EA treatment reversed these abnormal changes (P<0.01). Meanwhile, EA stimulation significantly increased the levels of GDNF, Rai, PI3K, and mTOR (P<0.01). After exogenous administration with autophagy inhibitor 3-MA or GDNF antagonist, the repair effect of EA on facial function was attenuated (P<0.05 or P<0.01).
		                        		
		                        			CONCLUSIONS
		                        			EA could promote the recovery of facial function and repair the facial nerve damages in a rat model of FNI. EA may exert this neuroreparative effect through mediating the release of GDNF, activating the PI3K/mTOR signaling pathway, and further regulating the autophagy of facial nerves.
		                        		
		                        		
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Electroacupuncture
		                        			;
		                        		
		                        			Phosphatidylinositol 3-Kinase/metabolism*
		                        			;
		                        		
		                        			Facial Nerve Injuries/therapy*
		                        			;
		                        		
		                        			Phosphatidylinositol 3-Kinases/metabolism*
		                        			;
		                        		
		                        			Beclin-1
		                        			;
		                        		
		                        			Glial Cell Line-Derived Neurotrophic Factor
		                        			;
		                        		
		                        			Signal Transduction
		                        			;
		                        		
		                        			TOR Serine-Threonine Kinases/metabolism*
		                        			;
		                        		
		                        			Autophagy
		                        			;
		                        		
		                        			Mammals/metabolism*
		                        			
		                        		
		                        	
6. Down-regulation of METTL5 inhibits proliferation, migration and invasion of triple-negative breast cancer cells through Wnt/6-catenin signaling pathway
Kun-Lin WU ; Hui-Hao ZHANG ; Kun-Lin WU ; Xiu-Ying LIAO ; Hui-Hao ZHANG ; Qian-Yi YAN ; De-Xing WANG
Chinese Pharmacological Bulletin 2024;40(2):285-291
		                        		
		                        			
		                        			 Aim To investigate the role and potential mechanism of methyltransferase-like 5 (METTL5) in triple-negative breast cancer (TNBC) . Methods The expression of METTL5 in TNBC tumor tissues and cell lines was detected by immunohistochemistry and Western blot. After shRNA targeting METTL5 (shRNAMETTL5) was transfected into TNBC cells, cell proliferation, migration and invasion were detected by CCK-8, colony formation, wound healing and Transwell assays, respectively. Western blot was used to detect the expression of Wnt/p-catenin signaling-related key proteins. A xenograft tumor model was constructed to verify the effect of METTL5 knockdown on the growth of TNBC cells and Wnt/p-catenin signaling activity in vivo. Results The expression of METTL5 was up-regulated in TNBC tumor tissues and cell lines (P < 0. 01) . Knockdown of METTL5 significantly inhibited the proliferation, migration and invasion of TNBC cells and reduced the expression of Wnt/p-catenin signaling molecules (3-catenin, cyclin Dl, matrix metalloproteinase (MMP) -2 and MMP-7 (all P < 0. 01) . Knockdown of METTL5 reduced tumor growth and Wnt/pcatenin signaling activity in vivo. Conclusions Knockdown of METTL5 can inhibit the proliferation, migration and invasion of TNBC cells, which may be related to the inhibition of Wnt/p-catenin signaling pathway. 
		                        		
		                        		
		                        		
		                        	
7.Stability study of umbilical cord mesenchymal stem cells formulation in large-scale production
Wang-long CHU ; Tong-jing LI ; Yan SHANGGUAN ; Fang-tao HE ; Jian-fu WU ; Xiu-ping ZENG ; Tao GUO ; Qing-fang WANG ; Fen ZHANG ; Zhen-zhong ZHONG ; Xiao LIANG ; Jun-yuan HU ; Mu-yun LIU
Acta Pharmaceutica Sinica 2024;59(3):743-750
		                        		
		                        			
		                        			 Umbilical cord mesenchymal stem cells (UC-MSCs) have been widely used in regenerative medicine, but there is limited research on the stability of UC-MSCs formulation during production. This study aims to assess the stability of the cell stock solution and intermediate product throughout the production process, as well as the final product following reconstitution, in order to offer guidance for the manufacturing process and serve as a reference for formulation reconstitution methods. Three batches of cell formulation were produced and stored under low temperature (2-8 ℃) and room temperature (20-26 ℃) during cell stock solution and intermediate product stages. The storage time intervals for cell stock solution were 0, 2, 4, and 6 h, while for intermediate products, the intervals were 0, 1, 2, and 3 h. The evaluation items included visual inspection, viable cell concentration, cell viability, cell surface markers, lymphocyte proliferation inhibition rate, and sterility. Additionally, dilution and culture stability studies were performed after reconstitution of the cell product. The reconstitution diluents included 0.9% sodium chloride injection, 0.9% sodium chloride injection + 1% human serum albumin, and 0.9% sodium chloride injection + 2% human serum albumin, with dilution ratios of 10-fold and 40-fold. The storage time intervals after dilution were 0, 1, 2, 3, and 4 h. The reconstitution culture media included DMEM medium, DMEM + 2% platelet lysate, 0.9% sodium chloride injection, and 0.9% sodium chloride injection + 1% human serum albumin, and the culture duration was 24 h. The evaluation items were viable cell concentration and cell viability. The results showed that the cell stock solution remained stable for up to 6 h under both low temperature (2-8 ℃) and room temperature (20-26 ℃) conditions, while the intermediate product remained stable for up to 3 h under the same conditions. After formulation reconstitution, using sodium chloride injection diluted with 1% or 2% human serum albumin maintained a viability of over 80% within 4 h. It was observed that different dilution factors had an impact on cell viability. After formulation reconstitution, cultivation in medium with 2% platelet lysate resulted in a cell viability of over 80% after 24 h. In conclusion, the stability of cell stock solution within 6 h and intermediate product within 3 h meets the requirements. The addition of 1% or 2% human serum albumin in the reconstitution diluent can better protect the post-reconstitution cell viability. 
		                        		
		                        		
		                        		
		                        	
8.Schistosoma infection, KRAS mutation status, and prognosis of colorectal cancer.
Xinyi LI ; Hongli LIU ; Bo HUANG ; Ming YANG ; Jun FAN ; Jiwei ZHANG ; Mixia WENG ; Zhecheng YAN ; Li LIU ; Kailin CAI ; Xiu NIE ; Xiaona CHANG
Chinese Medical Journal 2024;137(2):235-237
9.Identification of chemical components of Longmu Qingxin Mixture by UPLC-Q-TOF-MS and research on its material basis for attention deficit hyperactivity disorder
Xue-Jun LI ; Zhi-Yan JIANG ; Zhen XIAO ; Xiu-Feng CHEN ; Shu-Min WANG ; Yi-Xing ZHANG ; Wen-Yan PU
Chinese Traditional Patent Medicine 2024;46(2):490-498
		                        		
		                        			
		                        			AIM To identify the chemical components of Longmu Qingxin Mixture by UPLC-Q-TOF-MS and study its material basis for the treatment of attention deficit hyperactivity disorder.METHODS The sample was detected by mass spectrometry in positive and negative ion mode on a Waters CORTECS? UPLC? T3 chromatographic column.The data were analyzed with Peakview 1.2 software and matched with the Natural Products HR-MS/MS Spectral Library 1.0 database,and the components were identified in combination with literature reports.The material basis of Longmu Qingxin Mixture for the treatment of attention deficit hyperactivity disorder was analysed according to the identified components.RESULTS Forty chemical components were identified,including 11 flavonoids,6 monoterpene glycosides,4 triterpene saponins,3 phenolic acids,6 alkaloids etc.,which mainly derived from Radix Astragali,Radix Paeoniae Alba,Radix Scutellariae,licorice root,Ramulus Uncariae cum,etc.,baicalein,formononetin,astragaloside Ⅳ and rhynchophylline may be the material basis for the therapeutic effect of Longmu Qingxin Mixture.CONCLUSION UPLC-Q-TOF-MS can quickly identify the chemical components of Longmu Qingxin Mixture.Flavonoids,triterpene saponins and alkaloids may be the material basis for Longmu Qingxin Mixture for the treatment of attention deficit hyperactivity disorder,which can provide the basis for its material basis research,quality standard establishment and pharmacological study of the dismantled formula.
		                        		
		                        		
		                        		
		                        	
10.Rosmarinic acid ameliorates acute liver injury by activating NRF2 and inhibiting ROS/TXNIP/NLRP3 signal pathway
Jun-fu ZHOU ; Xin-yan DAI ; Hui LI ; Yu-juan WANG ; Li-du SHEN ; DU Xiao-bi A ; Shi-ying ZHANG ; Jia-cheng GUO ; Heng-xiu YAN
Acta Pharmaceutica Sinica 2024;59(6):1664-1673
		                        		
		                        			
		                        			 Acute liver injury (ALI) is one of the common severe diseases in clinic, which is characterized by redox imbalance and inflammatory storm. Untimely treatment can easily lead to liver failure and even death. Rosmarinic acid (RA) has been proved to have anti-inflammatory and antioxidant activity, but it is not clear how to protect ALI through antioxidation and inhibition of inflammation. Therefore, this study explored the therapeutic effect and molecular mechanism of RA on ALI through 
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail