1.Evaluation of the efficacy and safety of Xiao′er Huangjin Zhike Granules in the treatment of acute bronchitis-caused cough (syndrome of phlegm-heat obstructing the lung) in children
Jun LIU ; Mengqing WANG ; Xiuhong JIN ; Yongxue CHI ; Chunying MA ; Xiaohui LIU ; Yiqun TENG ; Meiyun XIN ; Fei SUN ; Ming LIU ; Ling LU ; Xinping PENG ; Yongxia GUO ; Rong YU ; Quanjing CHEN ; Bin WANG ; Tong SHEN ; Lan LI ; Pingping LIU ; Xiong LI ; Ming LI ; Guilan WANG ; Baoping XU
Chinese Journal of Applied Clinical Pediatrics 2024;39(10):774-779
Objective:To evaluate the efficacy and safety of Xiao′er Huangjin Zhike Granules in the treatment of cough caused by acute bronchitis in children, which is defined in TCM terms as a syndrome of phlegm-heat obstructing the lung.Methods:This was a block-randomized, double-blind, placebo-controlled, multicenter clinical trial.From January 2022 to September 2023, 359 children aged 3 to 7 years old diagnosed as acute bronchitis (lung-obstructing phlegm-heat syndrome) were enrolled from 21 participating hospitals and randomly assigned to the experimental group and placebo group in a 3︰1 ratio, and respectively treated with Xiao′er Huangjin Zhike Granules and its matching placebo.Cough resolution/general resolution rate after 7 days of treatment was used as the primary efficacy outcome for both groups.Results:(1)On the seventh day of treatment, the rate of cough disappearance/basically disappearance in the experimental group and placebo group were 73.95% and 57.61% retrospectively, which had statistically significance ( P=0.001).(2)After 7 days of treatment, the median duration of cough disappearance/basic disappearance were 5 days and 6 days in the two groups , with a statistically significant difference ( P=0.006).The area under the curve of cough symptom severity time was 7.20 ± 3.79 in the experimental group and 8.20±4.42 in the placebo group.The difference between the two groups was statistically significant ( P=0.039).(3) After 7 days of treatment, the difference between TCM syndrome score and baseline was -16.0 (-20.0, -15.0) points in the experimental group and -15.0 (-18.0, -12.0) points in the placebo group, with significant difference between the two groups ( P=0.004).In the experimental group, the clinical control rate, the markedly effective rate, the effective rate and the ineffective rate were 49.04%, 28.35%, 16.48% and 6.13% severally; and in the placebo group, the clinical control rate, the markedly effective rate, the effective rate and the ineffective rate were 38.04%, 26.09%, 29.35%, and 6.52% separately, which had statistically significant ( P=0.014).(4) There was no significant difference in the incidence of adverse events or adverse reactions during the trial between both groups.Moreover, while adverse reactions in the form of vomiting and diarrhea were occasionally reported, no serious drug-related adverse event or adverse reaction was reported.(5)The tested drug provided good treatment compliance, showing no statistically significant difference from the placebo in terms of compliance rate. Conclusions:Based on the above findings, it can be concluded that Xiao′er Huangjin Zhike Granules provides good safety, efficacy, and treatment compliance in the treatment of cough caused by acute bronchitis, and lung-obstructing phlegm-heat syndrome, in children.
2.Multimodal MRI manifestations and correlation between lipoprotein-associated phospholipase A2,cystatin C and short-term prognosis in acute cerebral infarction
Zhan-Li QU ; Jin-Ming ZENG ; Jian XIONG ; Yang-Wei ZHANG ; Xu YANG ; Yi-Fei JI
Journal of Regional Anatomy and Operative Surgery 2024;33(8):735-740
Objective To explore the magnetic resonance imaging(MRI)manifestations of acute cerebral infarction(ACI)and the correlation between lipoprotein-associated phospholipase A2(Lp-PLA2),cystatin C(Cys C)and short-term prognosis.Methods A total of 110 ACI patients admitted to the department of neurology in our hospital from January 1,2022 to January 1,2023 were selected as the study objects.The clinical data and multimodal MRI were collected,and the serum Lp-PLA2 and Cys C levels of patients were detected.The patients were divided into the good prognosis group and the poor prognosis group according to the modified Rankin scale(mRS)score 90 days after onset.The predictive value of MRI manifestations and Lp-PLA2 and Cys C levels for short-term poor prognosis was analyzed.Results There were statistically significant differences in the time from onset to admission,National Institute of Health Stroke Scale(NIHSS)score on admission,hypertension or diabetes,coronary heart disease or atrial fibrillation of patients between the good prognosis group and the poor prognosis group(P<0.05).The proportions of patients with ischemic penumbra,HV positive,cortical-subcortical infarction,large perforating branch infarction,small perforating branch infarction,bilateral anterior circulation infarction,posterior circulation infarction,anterior-posterior circulation infarction,middle cerebral artery(MCA)stenosis or occlusion,both internal carotid artery(ICA)and MCA stenosis or occlusion,posterior cerebral artery(PCA)or vertebral artery(VA)stenosis or occlusion and hemorrhage transformation in the poor prognosis group were significantly higher than those in the good prognosis group(P<0.05).The Lp-PLA2 and Cys C levels of patients in the poor prognosis group were significantly higher than those in the good prognosis group(P<0.05).Small penetrating branch infarction,posterior circulation infarction,anterior-posterior circulation infarction,MCA stenosis or occlusion,both ICA and MCA stenosis or occlusion,hemorrhage transformation,serum Lp-PLA2 and Cys C had certain predictive value for patients with short-term poor prognosis(P<0.05).Conclusion MRI manifestations(ischemic penumbra,HV positivity,different types of cerebral infarction,and vascular stenosis)and serum Lp-PLA2 and Cys C levels can predict the short-term prognosis of ACI patients and provide important reference for the formulation of clinical treatment plans.
3.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
4.Determining Disease Activity and Glucocorticoid Response in Thyroid-Associated Ophthalmopathy:Preliminary Study Using Dynamic Contrast-Enhanced MRI
Hao HU ; Xiong-Ying PU ; Jiang ZHOU ; Wen-Hao JIANG ; Qian WU ; Jin-Ling LU ; Fei-Yun WU ; Huan-Huan CHEN ; Xiao-Quan XU
Korean Journal of Radiology 2024;25(12):1070-1082
Objective:
To assess the role of dynamic contrast-enhanced (DCE)-MRI of the extraocular muscles (EOMs) for determining the activity of thyroid-associated ophthalmopathy (TAO) and treatment response to glucocorticoids (GCs).
Materials and Methods:
We prospectively enrolled 65 patients with TAO (41 active, 82 eyes; 24 inactive, 48 eyes). Twenty-two active patients completed the GC treatment and follow-up assessment, including 15 patients (30 eyes) and 7 patients (14 eyes), defined as responsive and unresponsive, respectively. Model-free (time to peak [TTP], area under the curve [AUC], and Slope max) and model-based (Ktrans , Kep, and Ve) parameters of EOMs in embedded simplified histogram analyses were calculated and compared between groups. Multivariable logistic regression analysis was used to identify the independent predictors. The area under the receiver operating characteristic curve (AUROC) was used to evaluate the diagnostic performance.
Results:
Active patients exhibited significantly higher TTP at the 10th percentile (-10th), TTP-mean, and TTP at the 90th percentile (-90th); AUC-10th, AUC-mean, AUC-90th, and AUC-max; Ktrans -10th and Ktrans -mean; and Ve-10th, Ve-mean, Ve-90th, and Ve-max than inactive patients (P < 0.05). Responsive patients exhibited significantly lower TTP-min; higher Ktrans -mean and Ktrans -max; and higher Kep-10th, Kep-mean, and Kep-max than unresponsive patients (P < 0.05). TTP-mean and Ve-mean were independent variables for determining disease activity (P = 0.017 and 0.022, respectively). A combination of the two parameters could determine active TAO with moderate performance (AUROC = 0.687). TTP-min and Ktrans -mean were independent predictors of the response to GCs (P = 0.023 and 0.004, respectively), uniting which could determine the response to GCs with decent performance (AUROC = 0.821).
Conclusion
DCE-MRI-derived model-free and model-based parameters of EOMs can assist in the evaluation of TAO. In particular, TTP-mean and Ve-mean could be useful for determining the activity of TAO, whereas TTP-min and K trans -mean could be promising biomarkers for determining the response to GCs.
5.Determining Disease Activity and Glucocorticoid Response in Thyroid-Associated Ophthalmopathy:Preliminary Study Using Dynamic Contrast-Enhanced MRI
Hao HU ; Xiong-Ying PU ; Jiang ZHOU ; Wen-Hao JIANG ; Qian WU ; Jin-Ling LU ; Fei-Yun WU ; Huan-Huan CHEN ; Xiao-Quan XU
Korean Journal of Radiology 2024;25(12):1070-1082
Objective:
To assess the role of dynamic contrast-enhanced (DCE)-MRI of the extraocular muscles (EOMs) for determining the activity of thyroid-associated ophthalmopathy (TAO) and treatment response to glucocorticoids (GCs).
Materials and Methods:
We prospectively enrolled 65 patients with TAO (41 active, 82 eyes; 24 inactive, 48 eyes). Twenty-two active patients completed the GC treatment and follow-up assessment, including 15 patients (30 eyes) and 7 patients (14 eyes), defined as responsive and unresponsive, respectively. Model-free (time to peak [TTP], area under the curve [AUC], and Slope max) and model-based (Ktrans , Kep, and Ve) parameters of EOMs in embedded simplified histogram analyses were calculated and compared between groups. Multivariable logistic regression analysis was used to identify the independent predictors. The area under the receiver operating characteristic curve (AUROC) was used to evaluate the diagnostic performance.
Results:
Active patients exhibited significantly higher TTP at the 10th percentile (-10th), TTP-mean, and TTP at the 90th percentile (-90th); AUC-10th, AUC-mean, AUC-90th, and AUC-max; Ktrans -10th and Ktrans -mean; and Ve-10th, Ve-mean, Ve-90th, and Ve-max than inactive patients (P < 0.05). Responsive patients exhibited significantly lower TTP-min; higher Ktrans -mean and Ktrans -max; and higher Kep-10th, Kep-mean, and Kep-max than unresponsive patients (P < 0.05). TTP-mean and Ve-mean were independent variables for determining disease activity (P = 0.017 and 0.022, respectively). A combination of the two parameters could determine active TAO with moderate performance (AUROC = 0.687). TTP-min and Ktrans -mean were independent predictors of the response to GCs (P = 0.023 and 0.004, respectively), uniting which could determine the response to GCs with decent performance (AUROC = 0.821).
Conclusion
DCE-MRI-derived model-free and model-based parameters of EOMs can assist in the evaluation of TAO. In particular, TTP-mean and Ve-mean could be useful for determining the activity of TAO, whereas TTP-min and K trans -mean could be promising biomarkers for determining the response to GCs.
6.Determining Disease Activity and Glucocorticoid Response in Thyroid-Associated Ophthalmopathy:Preliminary Study Using Dynamic Contrast-Enhanced MRI
Hao HU ; Xiong-Ying PU ; Jiang ZHOU ; Wen-Hao JIANG ; Qian WU ; Jin-Ling LU ; Fei-Yun WU ; Huan-Huan CHEN ; Xiao-Quan XU
Korean Journal of Radiology 2024;25(12):1070-1082
Objective:
To assess the role of dynamic contrast-enhanced (DCE)-MRI of the extraocular muscles (EOMs) for determining the activity of thyroid-associated ophthalmopathy (TAO) and treatment response to glucocorticoids (GCs).
Materials and Methods:
We prospectively enrolled 65 patients with TAO (41 active, 82 eyes; 24 inactive, 48 eyes). Twenty-two active patients completed the GC treatment and follow-up assessment, including 15 patients (30 eyes) and 7 patients (14 eyes), defined as responsive and unresponsive, respectively. Model-free (time to peak [TTP], area under the curve [AUC], and Slope max) and model-based (Ktrans , Kep, and Ve) parameters of EOMs in embedded simplified histogram analyses were calculated and compared between groups. Multivariable logistic regression analysis was used to identify the independent predictors. The area under the receiver operating characteristic curve (AUROC) was used to evaluate the diagnostic performance.
Results:
Active patients exhibited significantly higher TTP at the 10th percentile (-10th), TTP-mean, and TTP at the 90th percentile (-90th); AUC-10th, AUC-mean, AUC-90th, and AUC-max; Ktrans -10th and Ktrans -mean; and Ve-10th, Ve-mean, Ve-90th, and Ve-max than inactive patients (P < 0.05). Responsive patients exhibited significantly lower TTP-min; higher Ktrans -mean and Ktrans -max; and higher Kep-10th, Kep-mean, and Kep-max than unresponsive patients (P < 0.05). TTP-mean and Ve-mean were independent variables for determining disease activity (P = 0.017 and 0.022, respectively). A combination of the two parameters could determine active TAO with moderate performance (AUROC = 0.687). TTP-min and Ktrans -mean were independent predictors of the response to GCs (P = 0.023 and 0.004, respectively), uniting which could determine the response to GCs with decent performance (AUROC = 0.821).
Conclusion
DCE-MRI-derived model-free and model-based parameters of EOMs can assist in the evaluation of TAO. In particular, TTP-mean and Ve-mean could be useful for determining the activity of TAO, whereas TTP-min and K trans -mean could be promising biomarkers for determining the response to GCs.
7.Determining Disease Activity and Glucocorticoid Response in Thyroid-Associated Ophthalmopathy:Preliminary Study Using Dynamic Contrast-Enhanced MRI
Hao HU ; Xiong-Ying PU ; Jiang ZHOU ; Wen-Hao JIANG ; Qian WU ; Jin-Ling LU ; Fei-Yun WU ; Huan-Huan CHEN ; Xiao-Quan XU
Korean Journal of Radiology 2024;25(12):1070-1082
Objective:
To assess the role of dynamic contrast-enhanced (DCE)-MRI of the extraocular muscles (EOMs) for determining the activity of thyroid-associated ophthalmopathy (TAO) and treatment response to glucocorticoids (GCs).
Materials and Methods:
We prospectively enrolled 65 patients with TAO (41 active, 82 eyes; 24 inactive, 48 eyes). Twenty-two active patients completed the GC treatment and follow-up assessment, including 15 patients (30 eyes) and 7 patients (14 eyes), defined as responsive and unresponsive, respectively. Model-free (time to peak [TTP], area under the curve [AUC], and Slope max) and model-based (Ktrans , Kep, and Ve) parameters of EOMs in embedded simplified histogram analyses were calculated and compared between groups. Multivariable logistic regression analysis was used to identify the independent predictors. The area under the receiver operating characteristic curve (AUROC) was used to evaluate the diagnostic performance.
Results:
Active patients exhibited significantly higher TTP at the 10th percentile (-10th), TTP-mean, and TTP at the 90th percentile (-90th); AUC-10th, AUC-mean, AUC-90th, and AUC-max; Ktrans -10th and Ktrans -mean; and Ve-10th, Ve-mean, Ve-90th, and Ve-max than inactive patients (P < 0.05). Responsive patients exhibited significantly lower TTP-min; higher Ktrans -mean and Ktrans -max; and higher Kep-10th, Kep-mean, and Kep-max than unresponsive patients (P < 0.05). TTP-mean and Ve-mean were independent variables for determining disease activity (P = 0.017 and 0.022, respectively). A combination of the two parameters could determine active TAO with moderate performance (AUROC = 0.687). TTP-min and Ktrans -mean were independent predictors of the response to GCs (P = 0.023 and 0.004, respectively), uniting which could determine the response to GCs with decent performance (AUROC = 0.821).
Conclusion
DCE-MRI-derived model-free and model-based parameters of EOMs can assist in the evaluation of TAO. In particular, TTP-mean and Ve-mean could be useful for determining the activity of TAO, whereas TTP-min and K trans -mean could be promising biomarkers for determining the response to GCs.
8.Determining Disease Activity and Glucocorticoid Response in Thyroid-Associated Ophthalmopathy:Preliminary Study Using Dynamic Contrast-Enhanced MRI
Hao HU ; Xiong-Ying PU ; Jiang ZHOU ; Wen-Hao JIANG ; Qian WU ; Jin-Ling LU ; Fei-Yun WU ; Huan-Huan CHEN ; Xiao-Quan XU
Korean Journal of Radiology 2024;25(12):1070-1082
Objective:
To assess the role of dynamic contrast-enhanced (DCE)-MRI of the extraocular muscles (EOMs) for determining the activity of thyroid-associated ophthalmopathy (TAO) and treatment response to glucocorticoids (GCs).
Materials and Methods:
We prospectively enrolled 65 patients with TAO (41 active, 82 eyes; 24 inactive, 48 eyes). Twenty-two active patients completed the GC treatment and follow-up assessment, including 15 patients (30 eyes) and 7 patients (14 eyes), defined as responsive and unresponsive, respectively. Model-free (time to peak [TTP], area under the curve [AUC], and Slope max) and model-based (Ktrans , Kep, and Ve) parameters of EOMs in embedded simplified histogram analyses were calculated and compared between groups. Multivariable logistic regression analysis was used to identify the independent predictors. The area under the receiver operating characteristic curve (AUROC) was used to evaluate the diagnostic performance.
Results:
Active patients exhibited significantly higher TTP at the 10th percentile (-10th), TTP-mean, and TTP at the 90th percentile (-90th); AUC-10th, AUC-mean, AUC-90th, and AUC-max; Ktrans -10th and Ktrans -mean; and Ve-10th, Ve-mean, Ve-90th, and Ve-max than inactive patients (P < 0.05). Responsive patients exhibited significantly lower TTP-min; higher Ktrans -mean and Ktrans -max; and higher Kep-10th, Kep-mean, and Kep-max than unresponsive patients (P < 0.05). TTP-mean and Ve-mean were independent variables for determining disease activity (P = 0.017 and 0.022, respectively). A combination of the two parameters could determine active TAO with moderate performance (AUROC = 0.687). TTP-min and Ktrans -mean were independent predictors of the response to GCs (P = 0.023 and 0.004, respectively), uniting which could determine the response to GCs with decent performance (AUROC = 0.821).
Conclusion
DCE-MRI-derived model-free and model-based parameters of EOMs can assist in the evaluation of TAO. In particular, TTP-mean and Ve-mean could be useful for determining the activity of TAO, whereas TTP-min and K trans -mean could be promising biomarkers for determining the response to GCs.
9.Double heterozygous pathogenic mutations in KIF3C and ZNF513 cause hereditary gingival fibromatosis.
Jianfan CHEN ; Xueqing XU ; Song CHEN ; Ting LU ; Yingchun ZHENG ; Zhongzhi GAN ; Zongrui SHEN ; Shunfei MA ; Duocai WANG ; Leyi SU ; Fei HE ; Xuan SHANG ; Huiyong XU ; Dong CHEN ; Leitao ZHANG ; Fu XIONG
International Journal of Oral Science 2023;15(1):46-46
Hereditary gingival fibromatosis (HGF) is a rare inherited condition with fibromatoid hyperplasia of the gingival tissue that exhibits great genetic heterogeneity. Five distinct loci related to non-syndromic HGF have been identified; however, only two disease-causing genes, SOS1 and REST, inducing HGF have been identified at two loci, GINGF1 and GINGF5, respectively. Here, based on a family pedigree with 26 members, including nine patients with HGF, we identified double heterozygous pathogenic mutations in the ZNF513 (c.C748T, p.R250W) and KIF3C (c.G1229A, p.R410H) genes within the GINGF3 locus related to HGF. Functional studies demonstrated that the ZNF513 p.R250W and KIF3C p.R410H variants significantly increased the expression of ZNF513 and KIF3C in vitro and in vivo. ZNF513, a transcription factor, binds to KIF3C exon 1 and participates in the positive regulation of KIF3C expression in gingival fibroblasts. Furthermore, a knock-in mouse model confirmed that heterozygous or homozygous mutations within Zfp513 (p.R250W) or Kif3c (p.R412H) alone do not led to clear phenotypes with gingival fibromatosis, whereas the double mutations led to gingival hyperplasia phenotypes. In addition, we found that ZNF513 binds to the SOS1 promoter and plays an important positive role in regulating the expression of SOS1. Moreover, the KIF3C p.R410H mutation could activate the PI3K and KCNQ1 potassium channels. ZNF513 combined with KIF3C regulates gingival fibroblast proliferation, migration, and fibrosis response via the PI3K/AKT/mTOR and Ras/Raf/MEK/ERK pathways. In summary, these results demonstrate ZNF513 + KIF3C as an important genetic combination in HGF manifestation and suggest that ZNF513 mutation may be a major risk factor for HGF.
Animals
;
Humans
;
Mice
;
Fibromatosis, Gingival/pathology*
;
Gingiva
;
Kinesins/genetics*
;
Mutation/genetics*
;
Phosphatidylinositol 3-Kinases/genetics*
10.Mechanism of Mongolian drug Naru-3 in initiation of neuroinflammation of neuropathic pain from MMP9/IL-1β signaling pathway.
Fang-Ting ZHOU ; Ying ZONG ; Yuan-Bin LI ; Ren-Li CAO ; Wu-Qiong HOU ; Li-Ting XU ; Fei YANG ; Yan-Li GU ; Xiao-Hui SU ; Qiu-Yan GUO ; Wei-Jie LI ; Hui XIONG ; Chao WANG ; Na LIN
China Journal of Chinese Materia Medica 2023;48(15):4173-4186
Neuropathic pain(NP) has similar phenotypes but different sequential neuroinflammatory mechanisms in the pathological process. It is of great significance to inhibit the initiation of neuroinflammation, which has become a new direction of NP treatment and drug development in recent years. Mongolian drug Naru-3 is clinically effective in the treatment of trigeminal neuralgia, sciatica, and other NPs in a short time, but its pharmacodynamic characteristics and mechanism of analgesia are still unclear. In this study, a spinal nerve ligation(SNL) model simulating clinical peripheral nerve injury was established and the efficacy and mechanism of Naru-3 in the treatment of NPs was discussed by means of behavioral detection, side effect evaluation, network analysis, and experimental verification. Pharmacodynamic results showed that Naru-3 increased the basic pain sensitivity threshold(mechanical hyperalgesia and thermal radiation hyperalgesia) in the initiation of SNL in animals and relieved spontaneous pain, however, there was no significant effect on the basic pain sensitivity threshold and motor coordination function of normal animals under physiological and pathological conditions. Meanwhile, the results of primary screening of target tissues showed that Naru-3 inhibited the second phase of injury-induced nociceptive response of formalin test in mice and reduced the expression of inflammatory factors in the spinal cord. Network analysis discovered that Naru-3 had synergy in the treatment of NP, and its mechanism was associated with core targets such as matrix metalloproteinase-9(MMP9) and interleukin-1β(IL-1β). The experiment further took the dorsal root ganglion(DRG) and the stage of patho-logical spinal cord as the research objects, focusing on the core targets of inducing microglial neuroinflammation. By means of Western blot, immunofluorescence, agonists, antagonists, behavior, etc., the mechanism of Naru-3 in exerting NP analgesia may be related to the negative regulation of the MMP9/IL-1β signaling pathway-mediated microglia p38/IL-1β inflammatory loop in the activation phase. The relevant research enriches the biological connotation of Naru-3 in the treatment of NP and provides references for clinical rational drug use.
Rats
;
Mice
;
Animals
;
Matrix Metalloproteinase 9/metabolism*
;
Rats, Sprague-Dawley
;
Neuroinflammatory Diseases
;
Interleukin-1beta/metabolism*
;
Spinal Cord/metabolism*
;
Signal Transduction
;
Hyperalgesia/metabolism*
;
Neuralgia/metabolism*

Result Analysis
Print
Save
E-mail