1.Analyzing occupational hazard factors monitoring in key industry workplaces in a city from 2019 to 2023
Liecong HU ; Zheng MA ; Quanjin ZHONG ; Manlian CHEN ; Peishan CHEN ; Jiabin CHEN ; Shibiao SU ; Jinguang XIONG
China Occupational Medicine 2025;52(1):89-93
Objective To analyze the monitoring status of occupational hazard factors in key industry workplaces in a city of the Pearl River Delta area from 2019 to 2023. Methods A total of 1 548 enterprises in 12 key industries of the city were selected as the research subjects using the judgmental sampling method. Their monitoring data for dust, chemical factors, and noise, along with the occupational health management status of the enterprises were analyzed. Results Among the 1 548 enterprises, large and medium-sized enterprises accounted for 2.7% and 13.4%, while small and micro enterprises accounted for 83.9%. A total of 474 enterprises exceeded the national limit in the detection of occupational hazard factors, with an exceedance rate of 30.6%. The rates of workers exposed to occupational hazard factors, dust, chemical factors, and noise were 29.4%, 6.9%, 21.0%, and 13.0%, respectively, all showing a downward trend year by year (all P<0.05). The training rates for occupational health among enterprise managers, responsible persons, and workers were 84.1%, 84.2%, and 91.2%, respectively. The detection rates for abnormal occupational health examinations among workers exposed to dust, chemical factors, and noise were 0.2%, 0.3%, and 0.5%, respectively. The setting rates of warning signs and warning instructions among enterprises for dust, chemical toxins, and noise were 87.3%, 91.1%, and 89.5%, respectively. The setting rates for dust, toxic chemical, and noise control facilities were 72.4%, 75.4%, and 46.0%, with effectiveness rates of 70.5%, 56.6%, and 55.2%, respectively. The distribution rates of personal protective dust masks, gas masks, and noise earplugs/earmuffs were 91.9%, 83.8%, and 86.4%, with wearing rates of 80.8%, 70.5%, and 76.4%, respectively. The detection rates of exceeding national limits for dust, chemical factors, and noise in the work site of occupational hazard factors were15.2%, 1.0%, and 21.6%, respectively. The detection rates of exceeding national limits for dust, chemical factors, and noise in the workplace of occupational hazard factors were 2.4%, 2.5%, and 12.3%, respectively. The exceedance rate for noise in work site showed an upward trend year by year (P<0.01). Conclusion Occupational disease prevention and control work in the key industries of this city needs strengthening. It is essential to further enhance the regular monitoring and preventive measures of occupational hazard factors in enterprises, improve protective measures, strengthen the use of personal protective equipment, and enhance occupational health training and supervision, to effectively reduce the risk of occupational diseases and protect workers' occupational health rights.
6.Anti-inflammatory and Antioxidant Effects and Mechanisms of Baicalin in Rat Model of COPD via NF-κB/Nrf2 Signaling Pathway
Feixue HU ; Genfa WANG ; Guoliang DONG ; Jun XIONG ; Xinzhong KANG ; Zhongjuan PENG ; Caiqiu SONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):117-126
ObjectiveTo investigate the anti-inflammatory and antioxidant effects of baicalin for treating chronic obstructive pulmonary disease (COPD) in rats and decipher the molecular mechanisms via the nuclear factor-kappa B (NF-κB)/nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. MethodsSixty SPF-grade male Sprague-Dawley rats were randomly assigned into six groups: normal control, COPD model, low-dose baicalin, medium-dose baicalin, high-dose baicalin, and budesonide. The normal control group received no treatment, whereas COPD was modeled in other groups with a combined modeling approach involving intratracheal lipopolysaccharide instillation and passive cigarette smoke exposure. The model establishment was evaluated through behavioral observation combined with pathological examination. Hematoxylin-eosin (HE) staining was performed to assess histopathological changes in the lung. Serum levels of inflammatory cytokines [interleukin (IL)-6, IL-8, IL-17, IL-22, tumor necrosis factor (TNF)-α, and transforming growth factor (TGF)-β)], reactive oxygen species (ROS), and vascular endothelial growth factor (VEGF) were quantified by enzyme-linked immunosorbent assay (ELISA). Meanwhile, the levels of IL-6, IL-17, and IL-22 in the bronchoalveolar lavage fluid (BALF) and IL-10, IL-22, and TNF-α in the lung tissue were measured via ELISA. Immunohistochemistry (IHC) was employed to detect the expression of histone deacetylase 2 (HDAC2) and Nrf2. Western blot was performed to evaluate the expression of phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), glucocorticoid receptor (GR), NF-κB, HDAC2, and Nrf2 in the lung tissue. Additionally, real-time PCR was conducted to assess the mRNA levels of PI3K, Akt, HDAC2, Nrf2, GR, and NF-κB in the lung tissue. ResultsHE staining revealed that the airway mucosal epithelium in the COPD model group appeared extensive shedding, structural disorganization, and diffuse infiltration of inflammatory cells within the lumen. And goblet cells showed compensatory proliferation with pathological hypertrophy of mucus glands. In contrast, inflammatory infiltration and alveolar overdistension were significantly alleviated in the medium- and high-dose baicalin groups. The COPD model group exhibited mucus plug formation within the terminal bronchioles, along with fibrotic narrowing of the bronchial wall. Moreover, the smooth muscle bundles of the bronchial wall were hypertrophic, with concomitant collagen deposition. Progressive dissolution and rupture of alveolar septa were observed, leading to the formation of abnormally enlarged air-filled cavities. However, the bronchial wall structure was largely restored with only mild thickening of the smooth muscle layer in the baicalin groups. Compared with the COPD model group, the medium- and high-dose baicalin groups showed declined ROS and VEGF levels (P<0.05), and all the baicalin groups presented lowered levels of IL-6, IL-8, IL-17, IL-22, TGF-β, and TNF-α and elevated level of IL-10 (P<0.05). Baicalin upregulated the protein levels of HDAC2, Nrf2, GR, PI3K, and Akt, while suppressing the protein level of NF-κB (P<0.05). Furthermore, baicalin increased the mRNA levels of Nrf2 and GR while down-regulating the mRNA level of NF-κB (P<0.05). ConclusionBaicalin exerts anti-inflammatory and antioxidant effects by inhibiting the pro-inflammatory factor NF-κB while enhancing the expression of the anti-inflammatory factor HDAC2 and activating the antioxidant factor Nrf2, thereby alleviating the lung tissue damage in COPD rats. The therapeutic effects of baicalin may be closely associated with its regulatory role in the NF-κB/Nrf2 signaling pathway.
7.Anti-inflammatory and Antioxidant Effects and Mechanisms of Baicalin in Rat Model of COPD via NF-κB/Nrf2 Signaling Pathway
Feixue HU ; Genfa WANG ; Guoliang DONG ; Jun XIONG ; Xinzhong KANG ; Zhongjuan PENG ; Caiqiu SONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):117-126
ObjectiveTo investigate the anti-inflammatory and antioxidant effects of baicalin for treating chronic obstructive pulmonary disease (COPD) in rats and decipher the molecular mechanisms via the nuclear factor-kappa B (NF-κB)/nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. MethodsSixty SPF-grade male Sprague-Dawley rats were randomly assigned into six groups: normal control, COPD model, low-dose baicalin, medium-dose baicalin, high-dose baicalin, and budesonide. The normal control group received no treatment, whereas COPD was modeled in other groups with a combined modeling approach involving intratracheal lipopolysaccharide instillation and passive cigarette smoke exposure. The model establishment was evaluated through behavioral observation combined with pathological examination. Hematoxylin-eosin (HE) staining was performed to assess histopathological changes in the lung. Serum levels of inflammatory cytokines [interleukin (IL)-6, IL-8, IL-17, IL-22, tumor necrosis factor (TNF)-α, and transforming growth factor (TGF)-β)], reactive oxygen species (ROS), and vascular endothelial growth factor (VEGF) were quantified by enzyme-linked immunosorbent assay (ELISA). Meanwhile, the levels of IL-6, IL-17, and IL-22 in the bronchoalveolar lavage fluid (BALF) and IL-10, IL-22, and TNF-α in the lung tissue were measured via ELISA. Immunohistochemistry (IHC) was employed to detect the expression of histone deacetylase 2 (HDAC2) and Nrf2. Western blot was performed to evaluate the expression of phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), glucocorticoid receptor (GR), NF-κB, HDAC2, and Nrf2 in the lung tissue. Additionally, real-time PCR was conducted to assess the mRNA levels of PI3K, Akt, HDAC2, Nrf2, GR, and NF-κB in the lung tissue. ResultsHE staining revealed that the airway mucosal epithelium in the COPD model group appeared extensive shedding, structural disorganization, and diffuse infiltration of inflammatory cells within the lumen. And goblet cells showed compensatory proliferation with pathological hypertrophy of mucus glands. In contrast, inflammatory infiltration and alveolar overdistension were significantly alleviated in the medium- and high-dose baicalin groups. The COPD model group exhibited mucus plug formation within the terminal bronchioles, along with fibrotic narrowing of the bronchial wall. Moreover, the smooth muscle bundles of the bronchial wall were hypertrophic, with concomitant collagen deposition. Progressive dissolution and rupture of alveolar septa were observed, leading to the formation of abnormally enlarged air-filled cavities. However, the bronchial wall structure was largely restored with only mild thickening of the smooth muscle layer in the baicalin groups. Compared with the COPD model group, the medium- and high-dose baicalin groups showed declined ROS and VEGF levels (P<0.05), and all the baicalin groups presented lowered levels of IL-6, IL-8, IL-17, IL-22, TGF-β, and TNF-α and elevated level of IL-10 (P<0.05). Baicalin upregulated the protein levels of HDAC2, Nrf2, GR, PI3K, and Akt, while suppressing the protein level of NF-κB (P<0.05). Furthermore, baicalin increased the mRNA levels of Nrf2 and GR while down-regulating the mRNA level of NF-κB (P<0.05). ConclusionBaicalin exerts anti-inflammatory and antioxidant effects by inhibiting the pro-inflammatory factor NF-κB while enhancing the expression of the anti-inflammatory factor HDAC2 and activating the antioxidant factor Nrf2, thereby alleviating the lung tissue damage in COPD rats. The therapeutic effects of baicalin may be closely associated with its regulatory role in the NF-κB/Nrf2 signaling pathway.
8.The in vitro and in vivo inhibitory effects of metformin on esophageal squamous cell carcinoma cells
Shan LIU ; Meng HU ; Zhuo ZHANG ; Fei XIONG ; Pingshang WU ; Xueman LI
China Pharmacy 2025;36(17):2113-2119
OBJECTIVE To explore the in vitro and in vivo inhibitory effects and mechanism of metformin on the malignant biological behavior of esophageal squamous cell carcinoma (ESCC) cells by the hypoxia inducible factor-1α (HIF-1α)/interleukin-8 (IL-8) signaling pathway. METHODS Human ESCC TE1 cells were assigned into blank group, metformin low-, medium-, and high-dose groups (0.5, 1, 2 mmol/L), IDF-11774 (HIF-1α inhibitor) group (20 μmol/L), and high-dose metformin+HIF-1α activator dimethyloxalylglycine (DMOG) group. After 24 h treatment, cell proliferation [measured by the positive rate of 5-ethynyl- 2′-deoxyuridine (EdU) and optical density at 450 nm (OD450 value)], apoptosis, invasion and migration as well as mRNA expressions of proliferating cell nuclear antigen (PCNA), Bcl-2 interacting mediator of cell death (Bim), migration and invasion enhancer 1 (MIEN1), and matrix metalloproteinase-9 (MMP-9), and protein expressions of HIF-1α and IL-8 in the cells were detected. The xenograft tumor model of nude mice was established. Thirty nude mice were randomly divided into blank group, metformin low-, medium-, and high-dose groups (i.g. administration of metformin 62.5, 125, 250 mg/kg+i.p. administration of equal volume of normal saline), IDF-11774 group (i.g. administration of 50 mg/kg IDF-11774+i.p. administration of equal volume of normal saline) and high-dose metformin+DMOG group (i.g. administration of metformin 250 mg/kg+i.p. administration of DMOG 250 mg/kg), with 5 mice in each group. They were given relevant medicine, once a day, for 4 consecutive weeks; the mass and volume of the tumor and protein expressions of HIF-1α and IL-8 in the tumor tissue were determined. RESULTS The EdU positive rate, OD450 value, cell invasion number, scratch healing rate, mRNA expressions of PCNA, MIEN1 and MMP-9, protein expressions of HIF-1α and IL-8, as well as the mass and volume of transplanted tumors and protein expressions of HIF-1α and IL-8 in tumor tissues were decreased by metformin in concentration/dose-dependent manner (P<0.05). Additionally,metformin increased the apoptosis rate and mRNA expression of Bim in cells (P<0.05). The trend of changes in corresponding indicators in the IDF-11774 group was consistent with that in the metformin groups, whereas DMOG could significantly attenuate the aforementioned effects of high-concentration/high-dose metformin (P<0.05). CONCLUSIONS Metformin can inhibit the proliferation, invasion, migration of TE1 cells, and tumor growth of nude mice, and induce cell apoptosis, the mechanism of which may be related to the inhibition of HIF-1α/IL-8 signaling pathway.
9.Research progress on valgus impacted proximal humeral fractures.
Bo LI ; Shimin CHANG ; Sunjun HU ; Shouchao DU ; Wenfeng XIONG
Chinese Journal of Reparative and Reconstructive Surgery 2024;38(1):107-112
OBJECTIVE:
To review the advancement made in the understanding of valgus impacted proximal humeral fracture (PHF).
METHODS:
The domestic and foreign literature about the valgus impacted PHF was extensively reviewed and the definition, classification, pathological features, and treatment of valgus impacted PHFs were summarized.
RESULTS:
PHF with a neck shaft angle ≥160° is recognized as a valgus impacted PHF characterized by the preservation of the medial epiphyseal region of the humeral head, which contributes to maintenance of the medial periosteum's integrity after fracture and reduces the occurrence of avascular necrosis. Therefore, the valgus impacted PHF has a better prognosis when compared to other complex PHFs. The Neer classification designates it as a three- or four-part fracture, while the AO/Association for the Study of Internal Fixation (AO/ASIF) categorizes it as type C (C1.1). In the management of the valgus impacted PHF, the selection between conservative and surgical approaches is contingent upon the patient's age and the extent of fracture displacement. While conservative treatment offers the advantage of being non-invasive, it is accompanied by limitations such as the inability to achieve anatomical reduction and the potential for multiple complications. Surgical treatment includes open reduction combined with steel wire or locking plate and/or non-absorbable suture, transosseous suture technology, and shoulder replacement. Surgeons must adopt personalized treatment strategies for each patient with a valgus impacted PHF. Minimally invasive surgery helps to preserve blood supply to the humeral head, mitigate the likelihood of avascular necrosis, and reduce postoperative complications of bone and soft tissue. For elderly patients with severe comminuted and displaced fractures, osteoporosis, and unsuitable internal fixation, shoulder joint replacement is the best treatment option.
CONCLUSION
Currently, there has been some advancement in the classification, vascular supply, and management of valgus impacted PHF. Nevertheless, further research is imperative to assess the clinical safety, biomechanical stability, and indication of minimally invasive technology.
Aged
;
Humans
;
Bone Plates
;
Bone Wires
;
Fracture Fixation, Internal/adverse effects*
;
Fractures, Comminuted/surgery*
;
Humeral Fractures
;
Osteonecrosis
;
Retrospective Studies
;
Shoulder Fractures/surgery*
;
Treatment Outcome
10.Effect and mechanism of Astragalus polysaccharide on peritoneal fibrosis and angiogenesis in peritoneal dialysis rats
Xue FENG ; Bin PENG ; Li FENG ; Shuangyi ZHU ; Xi HU ; Wei XIONG ; Zhi GAO
China Pharmacy 2024;35(6):712-717
OBJECTIVE To investigate the effect and mechanism of Astragalus polysaccharide (APS) on peritoneal fibrosis and angiogenesis in rats with peritoneal dialysis (PD). METHODS Rats were randomly divided into normal control group (Control group), model group (PD group), 70 mg/kg APS group (APS-L group), 140 mg/kg APS group (APS-H group), and 140 mg/kg APS+40 mg/kg hypoxia-inducible factor-1α (HIF-1α) agonist DMOG group (APS-H+DMOG group), with 12 rats in each group. PD rat models were constructed in the last four groups of rats. Administration groups were given APS intragastrically and DMOG intraperitoneally. Control group and PD group were given constant volume of normal saline intragastrically, once a day, for 4 consecutive weeks. After the last medication, the peritoneal ultrafiltration (UF), mass transfer of glucose (MTG), the levels of serum creatinine (Scr) and blood urea nitrogen (BUN) were detected in rats; peritoneal histomorphology and peritoneal fibrosis (peritoneal thickness and proportion of collagen fiber deposition) were observed; the microvascular density and the expression levels of α-smooth muscle actin (α-SMA), laminin (LN), HIF-1α and vascular endothelial growth factor (VEGF) proteins were detected in peritoneal tissue of rats. RESULTS Compared with Control group, the mesothelium of rats in the PD group was loosely arranged and shed, inflammatory cells infiltrated, the peritoneal thickness and proportion of collagen fiber deposition were increased significantly (P<0.05). The levels of MTG, Scr and BUN in serum, microvascular density and the expressions of α-SMA, LN, HIF-1α and VEGF proteins were significantly increased, while the level of UF was significantly decreased (P< 0.05); compared with PD group, the levels of above indexes were significantly reversed in APS-L and APS-H groups (P<0.05), and the improvement of APS-H group was better than APS-L group (P<0.05). Compared with APS-H group, the levels of above indexes in APS-H+DMOG group were all reversed (P<0.05). CONCLUSIONS APS inhibits peritoneal fibrosis and angioge-nesis in PD rats by inhibiting HIF-1α/VEGF signaling pathway.

Result Analysis
Print
Save
E-mail