1.Research progress of Faricimab in the treatment of macular edema associated with retinal vascular diseases
Xinyi HOU ; Haoran WANG ; Chunhua DAI ; Jing ZHANG ; Meng XIN ; Zhixin GUAN ; Shu LIU
International Eye Science 2025;25(8):1267-1273
		                        		
		                        			
		                        			 Intravitreal injection of anti-vascular endothelial growth factor(VEGF)agents has become the primary treatment for macular edema associated with retinal vascular disease such as diabetic retinopathy and retinal vein occlusion, but there are limitations such as variable treatment efficacy and insufficient durability of therapeutic effects. As the first bispecific antibody applied in ophthalmic treatment, Faricimab achieves favorable outcomes by simultaneously targeting both VEGF-A and angiopoietin-2(Ang-2)pathways. Based on evidence from recent clinical trials and real-world studies, this article reviews the research progress on Faricimab for the treatment of diabetic macular edema(DME), retinal vein occlusion-associated macular edema(RVO-ME)and refractory macular edema compared to the therapeutic effects of other agents. Additionally, based on Faricimab's safety characteristics and future potential, its therapeutic prospects for macular edema associated with retinal vascular diseases are discussed. This review aims to provide evidence-based references for optimizing clinical treatment strategies, thereby contributing to mitigating the risk of vision loss due to macular edema. 
		                        		
		                        		
		                        		
		                        	
2.Neutrophil activation is correlated with acute kidney injury after cardiac surgery under cardiopulmonary bypass
Tingting WANG ; Yuanyuan YAO ; Jiayi SUN ; Juan WU ; Xinyi LIAO ; Wentong MENG ; Min YAN ; Lei DU ; Jiyue XIONG
Chinese Journal of Blood Transfusion 2025;38(3):358-367
		                        		
		                        			
		                        			 [Objective] To explore the relationship between neutrophil activation under cardiopulmonary bypass (CPB) and the incidence of cardiac surgery-associated acute kidney injury (CS-AKI). [Methods] This prospective cohort study enrolled adult patients who scheduled for cardiac surgery under CPB at West China Hospital between May 1, 2022 and March 31, 2023. The primary outcome was acute kidney injury (AKI). Blood samples (5 mL) were obtained from the central vein before surgery, at rewarming, at the end of CPB, and 24 hours after surgery. Neutrophils were labeled with CD11b, CD54 and other markers. To assess the effect of neutrophils activation on AKI, propensity score matching (PSM) was employed to equilibrate covariates between the groups. [Results] A total of 120 patients included into the study, and 17 (14.2%) developed AKI. Both CD11b+ and CD54+ neutrophils significantly increased during the rewarming phase and the increases were kept until 24 hours after surgery. During rewarming, the numbers of CD11b+ neutrophils were significantly higher in AKI compared to non-AKI (4.71×109/L vs 3.31×109/L, Z=-2.14, P<0.05). Similarly, the CD54+ neutrophils counts were also significantly higher in AKI than in non-AKI before surgery (2.75×109/L vs 1.79×109/L, Z=-2.99, P<0.05), during rewarming (3.12×109/L vs 1.62×109/L, Z=-4.34, P<0.05), and at the end of CPB (4.28×109/L vs 2.14×109/L, Z=-3.91, P<0.05). An analysis of 32 matched patients (16 in each group) revealed that CD11b+ and CD54+ neutrophil levels of AKI were 1.74 folds (4.83×109/L vs 2.77×109/L, Z=-2.72, P<0.05) and 2.34 folds (3.32×109/L vs 1.42×109/L, Z=-4.12, P<0.05), respectively, of non-AKI at rewarming phase. [Conclusion] Neutrophils are activated during CPB, and they can be identified by CD11b/CD54 markers. The activated neutrophils of AKI patients are approximately 2 folds of non-AKI during the rewarming phase, with disparity reached peak between groups during rewarming. These findings suggest the removal of 50% of activated neutrophils during the rewarming phase may be effective to reduce the risk of AKI.
		                        		
		                        		
		                        		
		                        	
3.Isolation and structural identification of a potassium ion channel Kv4.1 inhibitor SsTx-P2 from centipede venom.
Canwei DU ; Fuchu YUAN ; Xinyi DUAN ; Mingqiang RONG ; Er MENG ; Changjun LIU
Journal of Zhejiang University. Medical sciences 2024;():1-7
		                        		
		                        			OBJECTIVES:
		                        			To isolate potassium ion channel Kv4.1 inhibitor from centipede venom, and to determine its primary and spatial structure.
		                        		
		                        			METHODS:
		                        			Ion-exchange chromatography and reversed-phase high-performance liquid chromatography were performed to separate and purify peptide components of centipede venom, and their inhibiting effect on Kv4.1 channel was determined by whole-cell patch clamp recording. The molecular weight of isolated peptide Kv4.1 channel inhibitor was identified with MALDI-TOF, its primary sequence was determined by Edman degradation sequencing and two-dimensional mass spectrometry, its patial structure was established based on iterative thread assembly refinement online analysis.
		                        		
		                        			RESULTS:
		                        			A peptide SsTx-P2 was separated from centipede venom with the molecular weight of 6122.8, and its primary sequence consists of 53 amino acid residues, showed as NH2-ELTWDFVRTCCKLFPDKSECTKACATEFTGGDESRLKDVWPRKLRSGDSRLKD-OH. Peptide SsTx-P2 potently inhibited the current of Kv4.1 channel transiently transfected in HEK293 cell, with 1.0 μmol/L SsTx-P2 suppressing 95% current of Kv4.1 channel. Its spatial structure showed that SsTx-P2 shared a conserved helical structure.
		                        		
		                        			CONCLUSIONS
		                        			The study has isolated a novel peptide SsTx-P2 from centipede venom, which can potently inhibit the potassium ion channel Kv4.1, and its spatial structure displays a certain degree of conservation.
		                        		
		                        		
		                        		
		                        	
4.Combination of 1% platelet-rich plasma and bone marrow mesenchymal stem cells improves the recovery of peripheral nerve injury
Ruiqin FENG ; Na HAN ; Meng ZHANG ; Xinyi GU ; Fengshi ZHANG
Chinese Journal of Tissue Engineering Research 2024;28(7):985-992
		                        		
		                        			
		                        			BACKGROUND:Platelet-rich plasma has been shown to enhance the viability and the pro-angiogenesis capacity of mesenchymal stem cells.Extracellular vesicles are one of the key mediators for mesenchymal stem cells to exert their effects,but currently,it is unclear whether platelet-rich plasma affects the functions of extracellular vesicles. OBJECTIVE:To investigate the effects of platelet-rich plasma on the function of extracellular vesicles from bone marrow mesenchymal stem cells,verify whether platelet-rich plasma can be used as an adjuvant to enhance the healing effects of bone marrow mesenchymal stem cells on repairing the peripheral nerve injury. METHODS:For in vitro study,bone marrow mesenchymal stem cells were cultured under normal conditions and with 1%platelet-rich plasma.The ultracentrifugation was used to extract the extracellular vesicles produced by bone marrow mesenchymal stem cells cultured under normal conditions(EVs-nor)or the condition supplemented with 1%platelet-rich plasma(EVs-prp).Extracellular vesicles were used to incubate with Schwann cells.The EdU assay,western blot assay,qPCR and light microscopy photography were performed to examine the effects of EVs-nor and EVs-prp on Schwann cell reprogramming,which was characterized by cell proliferation,c-Jun expression,reprogramming-associated gene expression and cell morphology.For in vivo study,the model of sciatic nerve injury in rats was established.Bone marrow mesenchymal stem cells were grafted with or without 1%platelet-rich plasma into the injured rat sciatic nerve using a chitin nerve conduit.Eight weeks after the surgery,the recovery was assessed by histological and functional indexes,including regenerated nerve fiber density,gastrocnemius wet weight ratio and sciatic function index. RESULTS AND CONCLUSION:(1)Compared with EVs-nor,EVs-prp was stronger in promoting Schwann cell proliferation.The gene expressions of c-Jun and GDNF were significantly upregulated in EVs-prp treated Schwann cells.The morphology of Schwann cells was significantly longer in EVs-prp group than that in EVs-nor group,indicating that EVs-prp had a stronger ability to stimulate Schwann cell reprogramming than EVs-nor.(2)Sciatic nerve injury animal experiment results revealed that grafting mesenchymal stem cells along with platelet-rich plasma into the injured sciatic nerve showed the best recovery compared with grafting mesenchymal stem cells or platelet-rich plasma alone,demonstrated by the significantly improved density of nerve fibers,gastrocnemius wet weight ratio,and sciatic function index.(3)These results suggested that platelet-rich plasma improved the function of bone marrow mesenchymal stem cell-derived extracellular vesicles and could be served as a practical and feasible preparation to synergize with bone marrow mesenchymal stem cells to improve peripheral nerve repair.
		                        		
		                        		
		                        		
		                        	
5.Expression and clinical value of miR-124 and miR-1976 in serum of patients with Parkinson's disease
Ting CHEN ; Hao CHEN ; Liang SHI ; Weihong YAN ; Zhibin DING ; Haoyu JI ; Meng ZHANG ; Xinyi LI
Chinese Journal of Geriatrics 2024;43(1):23-28
		                        		
		                        			
		                        			Objective:To investigate the expression and clinical significance of microRNA-124(miR-124)and microRNA-1976(miR-1976)in the serum of patients with Parkinson's disease(PD).Methods:A total of 58 patients with PD were selected from September 2020 to June 2022 and categorized as the PD group.The Unified Parkinson's Disease Rating Scale(UPDRS)score was used to divide the PD patients into two groups: those with a UPDRS score≤60(25 patients)and those with a UPDRS score >60(33 patients). The Hoehn-Yahr grading scale was used to grade the PD patients.Additionally, 30 healthy individuals who had undergone a physical examination during the same period were selected as the control group.After collecting the subjects' serum, we performed real-time fluorescent quantitative PCR(qRT-PCR)to detect the expressions of miR-124 and miR-1976 in the serum.Logistic regression analysis was employed to analyze the influencing factors, and the diagnostic significance of serum miR-124 and miR-1976 in PD patients was evaluated using the receiver operating characteristic(ROC)curve.To predict the target genes of miR-1976, we utilized several software including TargetScan and Mirtarbase.Results:Compared to the control group, the PD group showed a significant down-regulation of serum miR-124 expression[(1.49±0.36) vs.(1.02±0.32)]( t=8.85, P<0.001), while miR-1976 expression was sharply up-regulated[(0.98±0.30) vs.(1.33±0.37)]( t=6.92, P<0.001). The low expression of serum miR-124 and the overexpression of miR-1976 were identified as independent risk factors for PD( OR>1, P<0.05). The Hoehn-Yahr rating of PD patients with a UPDRS score above 60 was higher than that of patients with a UPDRS score below 60[(3.42 ± 0.73) vs.(2.16 ± 0.42)]( t=3.05, P<0.05). However, there was no significant difference in serum miR-124 and miR-1976 expression between groups with different UPDRS scores[miR-124: (1.09±0.26) vs.(0.98±0.38)( t=0.89, P>0.05); miR-1976: (1.42±0.43) vs.(1.23±0.68)( t=0.62, P>0.05)]. The ROC analysis results demonstrated that miR-124 and miR-1976 had area under the curve(AUC)values of 0.832 and 0.797, respectively, in diagnosing PD.The corresponding cutoff values were 1.205 and 1.196, respectively.The sensitivity for miR-124 was 74.1%, while for miR-1976 it was 51.8%.The specificity for miR-124 was 77.8%, and for miR-1976 it was 90.1%.When both miR-124 and miR-1976 were combined in the diagnosis of PD, the AUC was 0.912, with a sensitivity of 76.4% and a specificity of 93.2%.Furthermore, it was found that miR-1976 targeted the PINK1 gene, suggesting its potential as a target gene in PD. Conclusions:The expression of miR-124 was found to be decreased in PD patients, while the expression of miR-1976 was increased.Both miR-124 and miR-1976 showed some reference value in PD diagnosis, and their combined diagnostic value was higher.This suggests that further study on their significance is warranted.However, it should be noted that the expressions of miR-124 and miR-1976 were not found to be correlated with the UPDRS score of PD patients.
		                        		
		                        		
		                        		
		                        	
6.Isolation and structural identification of a potassium ion channel Kv4.1 inhibitor SsTx-P2 from centipede venom
Canwei DU ; Fuchu YUAN ; Xinyi DUAN ; Mingqiang RONG ; Er MENG ; Changjun LIU
Journal of Zhejiang University. Medical sciences 2024;53(2):194-200
		                        		
		                        			
		                        			Objective:To isolate a potassium ion channel Kv4.1 inhibitor from centipede venom,and to determine its sequence and structure.Methods:Ion-exchange chromatography and reversed-phase high-performance liquid chromatography were performed to separate and purify peptide components of centipede venom,and their inhibiting effect on Kv4.1 channel was determined by whole-cell patch clamp recording.The molecular weight of isolated peptide Kv4.1 channel inhibitor was identified with matrix assisted laser desorption ionization-time-of-flight mass spectrometry;its primary sequence was determined by Edman degradation sequencing and two-dimensional mass spectrometry;its structure was established based on iterative thread assembly refinement online analysis.Results:A peptide SsTx-P2 was separated from centipede venom with the molecular weight of 6122.8,and its primary sequence consists of 53 amino acid residues NH2-ELTWDFVRTCCKLFPDKSECTKACATEFTGGDESRLKDVWPRKLRSG DSRLKD-OH.Peptide SsTx-P2 potently inhibited the current of Kv4.1 channel transiently transfected in HEK293 cell,with 1.0 μmol/L SsTx-P2 suppressing 95%current of Kv4.1 channel.Its structure showed that SsTx-P2 shared a conserved helical structure.Conclusion:The study has isolated a novel peptide SsTx-P2 from centipede venom,which can potently inhibit the potassium ion channel Kv4.1 and displays structural conservation.
		                        		
		                        		
		                        		
		                        	
7.Application and research progress of cell-free DNA in the diagnosis and treatment of related disease
Xinyi LU ; Qingtai MENG ; Ping HUANG ; Yagan DUAN ; Zhiyuan CHEN ; Peng XU ; Fengmin ZHANG
Chinese Journal of Laboratory Medicine 2024;47(2):197-204
		                        		
		                        			
		                        			Cell-free DNA (cfDNA) is the DNA fragment existing in human extracellular fluid. In specific physiological process (such as pregnancy) or pathological conditions (such as human malignancies), the contents of cfDNA in extracellular fluid will abnormally change. The contents and molecular characteristics of cfDNA make it have the potential as a kind of biomarker for diseases′ diagnosis. With the development of cfDNA detection technology such as sequencing and mass spectrometry, liquid biopsy based on cfDNA detection has been widely used in clinical tumor diagnosis, tumor treatment, prenatal examination, and research in autoimmune diseases. A systematic summary of the latest research progress in the development of cfDNA detection technology and the clinical application of liquid biopsy, as well as the research progress of cfDNA in the diagnosis and treatment of related diseases is summarized in this review.
		                        		
		                        		
		                        		
		                        	
8.Isolation and structural identification of a potassium ion channel Kv4.1 inhibitor SsTx-P2 from centipede venom
Canwei DU ; Fuchu YUAN ; Xinyi DUAN ; Mingqiang RONG ; Er MENG ; Changjun LIU
Journal of Zhejiang University. Medical sciences 2024;53(2):194-200
		                        		
		                        			
		                        			Objective:To isolate a potassium ion channel Kv4.1 inhibitor from centipede venom,and to determine its sequence and structure.Methods:Ion-exchange chromatography and reversed-phase high-performance liquid chromatography were performed to separate and purify peptide components of centipede venom,and their inhibiting effect on Kv4.1 channel was determined by whole-cell patch clamp recording.The molecular weight of isolated peptide Kv4.1 channel inhibitor was identified with matrix assisted laser desorption ionization-time-of-flight mass spectrometry;its primary sequence was determined by Edman degradation sequencing and two-dimensional mass spectrometry;its structure was established based on iterative thread assembly refinement online analysis.Results:A peptide SsTx-P2 was separated from centipede venom with the molecular weight of 6122.8,and its primary sequence consists of 53 amino acid residues NH2-ELTWDFVRTCCKLFPDKSECTKACATEFTGGDESRLKDVWPRKLRSG DSRLKD-OH.Peptide SsTx-P2 potently inhibited the current of Kv4.1 channel transiently transfected in HEK293 cell,with 1.0 μmol/L SsTx-P2 suppressing 95%current of Kv4.1 channel.Its structure showed that SsTx-P2 shared a conserved helical structure.Conclusion:The study has isolated a novel peptide SsTx-P2 from centipede venom,which can potently inhibit the potassium ion channel Kv4.1 and displays structural conservation.
		                        		
		                        		
		                        		
		                        	
9.Isolation and structural identification of a potassium ion channel Kv4.1 inhibitor SsTx-P2 from centipede venom
Canwei DU ; Fuchu YUAN ; Xinyi DUAN ; Mingqiang RONG ; Er MENG ; Changjun LIU
Journal of Zhejiang University. Medical sciences 2024;53(2):194-200
		                        		
		                        			
		                        			Objective:To isolate a potassium ion channel Kv4.1 inhibitor from centipede venom,and to determine its sequence and structure.Methods:Ion-exchange chromatography and reversed-phase high-performance liquid chromatography were performed to separate and purify peptide components of centipede venom,and their inhibiting effect on Kv4.1 channel was determined by whole-cell patch clamp recording.The molecular weight of isolated peptide Kv4.1 channel inhibitor was identified with matrix assisted laser desorption ionization-time-of-flight mass spectrometry;its primary sequence was determined by Edman degradation sequencing and two-dimensional mass spectrometry;its structure was established based on iterative thread assembly refinement online analysis.Results:A peptide SsTx-P2 was separated from centipede venom with the molecular weight of 6122.8,and its primary sequence consists of 53 amino acid residues NH2-ELTWDFVRTCCKLFPDKSECTKACATEFTGGDESRLKDVWPRKLRSG DSRLKD-OH.Peptide SsTx-P2 potently inhibited the current of Kv4.1 channel transiently transfected in HEK293 cell,with 1.0 μmol/L SsTx-P2 suppressing 95%current of Kv4.1 channel.Its structure showed that SsTx-P2 shared a conserved helical structure.Conclusion:The study has isolated a novel peptide SsTx-P2 from centipede venom,which can potently inhibit the potassium ion channel Kv4.1 and displays structural conservation.
		                        		
		                        		
		                        		
		                        	
10.Isolation and structural identification of a potassium ion channel Kv4.1 inhibitor SsTx-P2 from centipede venom
Canwei DU ; Fuchu YUAN ; Xinyi DUAN ; Mingqiang RONG ; Er MENG ; Changjun LIU
Journal of Zhejiang University. Medical sciences 2024;53(2):194-200
		                        		
		                        			
		                        			Objective:To isolate a potassium ion channel Kv4.1 inhibitor from centipede venom,and to determine its sequence and structure.Methods:Ion-exchange chromatography and reversed-phase high-performance liquid chromatography were performed to separate and purify peptide components of centipede venom,and their inhibiting effect on Kv4.1 channel was determined by whole-cell patch clamp recording.The molecular weight of isolated peptide Kv4.1 channel inhibitor was identified with matrix assisted laser desorption ionization-time-of-flight mass spectrometry;its primary sequence was determined by Edman degradation sequencing and two-dimensional mass spectrometry;its structure was established based on iterative thread assembly refinement online analysis.Results:A peptide SsTx-P2 was separated from centipede venom with the molecular weight of 6122.8,and its primary sequence consists of 53 amino acid residues NH2-ELTWDFVRTCCKLFPDKSECTKACATEFTGGDESRLKDVWPRKLRSG DSRLKD-OH.Peptide SsTx-P2 potently inhibited the current of Kv4.1 channel transiently transfected in HEK293 cell,with 1.0 μmol/L SsTx-P2 suppressing 95%current of Kv4.1 channel.Its structure showed that SsTx-P2 shared a conserved helical structure.Conclusion:The study has isolated a novel peptide SsTx-P2 from centipede venom,which can potently inhibit the potassium ion channel Kv4.1 and displays structural conservation.
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail