1.Construction and Validation of a Nomogram for Predicting Lymph Node Metas-tasis in Cervical Cancer Using Preoperative Inflammatory and Immune Nutri-tional Indicators
Xingyue XU ; Yilin GUO ; Lu WANG ; Mengqi LI ; Rui LI ; Fuhua LU ; Hu ZHAO
Journal of Practical Obstetrics and Gynecology 2024;40(8):645-650
Objective:To predict lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer based on preoperative inflammatory and immune nutritional indicators,and to construct a nomo-gram prediction model,providing a basis and tool for preoperative diagnosis of lymph node metastasis in cervical cancer.Methods:A retrospective analysis was conducted on the clinical data of 307 patients preoperatively diag-nosed with early-stage cervical cancer who underwent surgical treatment at the Obstetrics and Gynecology De-partment of the Second Affiliated Hospital of Zhengzhou University from January 2018 to July 2023.R software was used to randomize the groups into a training set(n=231)and a validation set(n=76)in a 3∶1 ratio.Uni-variate and multivariate logistic regression analyses were employed to identify factors influencing lymph node me-tastasis in patients preoperatively diagnosed with early-stage cervical cancer.R software was used to establish a nomogram prediction model and draw receiver operating characteristic(ROC)curves and calibration curves for validation.Results:① The results of univariate logistic regression analysis showed that positive lymphovascular invasion,platelet-to-lymphocyte ratio(PLR)≥151.70,neutrophil-to-white blood cell ratio(NWR)≥0.65,plate-let-to-albumin ratio(PAR)≥ 4.94,preoperative systemic immune-inflammation index(SII)≥604.03,and sys-temic inflammatory response index(SIRI)≥ 1.05 were associated with lymph node metastasis(P<0.05).②Multivariate logistic regression analysis found that positive lymphovascular invasion,NWR≥0.65,and PAR≥4.94 were independent risk factors for lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer(OR>1,P<0.05).③ A nomogram was constructed to predict lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer.The ROC curve shows an area under the train-ing set curve(AUC)of 0.821 and a validation set AUC of 0.858.The calibration curve shows an average abso-lute error of 0.024 for the training set and 0.059 for the validation set.Conclusions:The prediction model for lymph node metastasis in cervical cancer constructed using preoperative inflammatory and immune nutritional indi-cators such as NWR,PAR is helpful for gynecological oncologists to predict lymph node metastasis in cervical cancer patients before surgery.
2.Construction and Validation of a Nomogram for Predicting Lymph Node Metas-tasis in Cervical Cancer Using Preoperative Inflammatory and Immune Nutri-tional Indicators
Xingyue XU ; Yilin GUO ; Lu WANG ; Mengqi LI ; Rui LI ; Fuhua LU ; Hu ZHAO
Journal of Practical Obstetrics and Gynecology 2024;40(8):645-650
Objective:To predict lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer based on preoperative inflammatory and immune nutritional indicators,and to construct a nomo-gram prediction model,providing a basis and tool for preoperative diagnosis of lymph node metastasis in cervical cancer.Methods:A retrospective analysis was conducted on the clinical data of 307 patients preoperatively diag-nosed with early-stage cervical cancer who underwent surgical treatment at the Obstetrics and Gynecology De-partment of the Second Affiliated Hospital of Zhengzhou University from January 2018 to July 2023.R software was used to randomize the groups into a training set(n=231)and a validation set(n=76)in a 3∶1 ratio.Uni-variate and multivariate logistic regression analyses were employed to identify factors influencing lymph node me-tastasis in patients preoperatively diagnosed with early-stage cervical cancer.R software was used to establish a nomogram prediction model and draw receiver operating characteristic(ROC)curves and calibration curves for validation.Results:① The results of univariate logistic regression analysis showed that positive lymphovascular invasion,platelet-to-lymphocyte ratio(PLR)≥151.70,neutrophil-to-white blood cell ratio(NWR)≥0.65,plate-let-to-albumin ratio(PAR)≥ 4.94,preoperative systemic immune-inflammation index(SII)≥604.03,and sys-temic inflammatory response index(SIRI)≥ 1.05 were associated with lymph node metastasis(P<0.05).②Multivariate logistic regression analysis found that positive lymphovascular invasion,NWR≥0.65,and PAR≥4.94 were independent risk factors for lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer(OR>1,P<0.05).③ A nomogram was constructed to predict lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer.The ROC curve shows an area under the train-ing set curve(AUC)of 0.821 and a validation set AUC of 0.858.The calibration curve shows an average abso-lute error of 0.024 for the training set and 0.059 for the validation set.Conclusions:The prediction model for lymph node metastasis in cervical cancer constructed using preoperative inflammatory and immune nutritional indi-cators such as NWR,PAR is helpful for gynecological oncologists to predict lymph node metastasis in cervical cancer patients before surgery.
3.Construction and Validation of a Nomogram for Predicting Lymph Node Metas-tasis in Cervical Cancer Using Preoperative Inflammatory and Immune Nutri-tional Indicators
Xingyue XU ; Yilin GUO ; Lu WANG ; Mengqi LI ; Rui LI ; Fuhua LU ; Hu ZHAO
Journal of Practical Obstetrics and Gynecology 2024;40(8):645-650
Objective:To predict lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer based on preoperative inflammatory and immune nutritional indicators,and to construct a nomo-gram prediction model,providing a basis and tool for preoperative diagnosis of lymph node metastasis in cervical cancer.Methods:A retrospective analysis was conducted on the clinical data of 307 patients preoperatively diag-nosed with early-stage cervical cancer who underwent surgical treatment at the Obstetrics and Gynecology De-partment of the Second Affiliated Hospital of Zhengzhou University from January 2018 to July 2023.R software was used to randomize the groups into a training set(n=231)and a validation set(n=76)in a 3∶1 ratio.Uni-variate and multivariate logistic regression analyses were employed to identify factors influencing lymph node me-tastasis in patients preoperatively diagnosed with early-stage cervical cancer.R software was used to establish a nomogram prediction model and draw receiver operating characteristic(ROC)curves and calibration curves for validation.Results:① The results of univariate logistic regression analysis showed that positive lymphovascular invasion,platelet-to-lymphocyte ratio(PLR)≥151.70,neutrophil-to-white blood cell ratio(NWR)≥0.65,plate-let-to-albumin ratio(PAR)≥ 4.94,preoperative systemic immune-inflammation index(SII)≥604.03,and sys-temic inflammatory response index(SIRI)≥ 1.05 were associated with lymph node metastasis(P<0.05).②Multivariate logistic regression analysis found that positive lymphovascular invasion,NWR≥0.65,and PAR≥4.94 were independent risk factors for lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer(OR>1,P<0.05).③ A nomogram was constructed to predict lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer.The ROC curve shows an area under the train-ing set curve(AUC)of 0.821 and a validation set AUC of 0.858.The calibration curve shows an average abso-lute error of 0.024 for the training set and 0.059 for the validation set.Conclusions:The prediction model for lymph node metastasis in cervical cancer constructed using preoperative inflammatory and immune nutritional indi-cators such as NWR,PAR is helpful for gynecological oncologists to predict lymph node metastasis in cervical cancer patients before surgery.
4.Construction and Validation of a Nomogram for Predicting Lymph Node Metas-tasis in Cervical Cancer Using Preoperative Inflammatory and Immune Nutri-tional Indicators
Xingyue XU ; Yilin GUO ; Lu WANG ; Mengqi LI ; Rui LI ; Fuhua LU ; Hu ZHAO
Journal of Practical Obstetrics and Gynecology 2024;40(8):645-650
Objective:To predict lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer based on preoperative inflammatory and immune nutritional indicators,and to construct a nomo-gram prediction model,providing a basis and tool for preoperative diagnosis of lymph node metastasis in cervical cancer.Methods:A retrospective analysis was conducted on the clinical data of 307 patients preoperatively diag-nosed with early-stage cervical cancer who underwent surgical treatment at the Obstetrics and Gynecology De-partment of the Second Affiliated Hospital of Zhengzhou University from January 2018 to July 2023.R software was used to randomize the groups into a training set(n=231)and a validation set(n=76)in a 3∶1 ratio.Uni-variate and multivariate logistic regression analyses were employed to identify factors influencing lymph node me-tastasis in patients preoperatively diagnosed with early-stage cervical cancer.R software was used to establish a nomogram prediction model and draw receiver operating characteristic(ROC)curves and calibration curves for validation.Results:① The results of univariate logistic regression analysis showed that positive lymphovascular invasion,platelet-to-lymphocyte ratio(PLR)≥151.70,neutrophil-to-white blood cell ratio(NWR)≥0.65,plate-let-to-albumin ratio(PAR)≥ 4.94,preoperative systemic immune-inflammation index(SII)≥604.03,and sys-temic inflammatory response index(SIRI)≥ 1.05 were associated with lymph node metastasis(P<0.05).②Multivariate logistic regression analysis found that positive lymphovascular invasion,NWR≥0.65,and PAR≥4.94 were independent risk factors for lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer(OR>1,P<0.05).③ A nomogram was constructed to predict lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer.The ROC curve shows an area under the train-ing set curve(AUC)of 0.821 and a validation set AUC of 0.858.The calibration curve shows an average abso-lute error of 0.024 for the training set and 0.059 for the validation set.Conclusions:The prediction model for lymph node metastasis in cervical cancer constructed using preoperative inflammatory and immune nutritional indi-cators such as NWR,PAR is helpful for gynecological oncologists to predict lymph node metastasis in cervical cancer patients before surgery.
5.Construction and Validation of a Nomogram for Predicting Lymph Node Metas-tasis in Cervical Cancer Using Preoperative Inflammatory and Immune Nutri-tional Indicators
Xingyue XU ; Yilin GUO ; Lu WANG ; Mengqi LI ; Rui LI ; Fuhua LU ; Hu ZHAO
Journal of Practical Obstetrics and Gynecology 2024;40(8):645-650
Objective:To predict lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer based on preoperative inflammatory and immune nutritional indicators,and to construct a nomo-gram prediction model,providing a basis and tool for preoperative diagnosis of lymph node metastasis in cervical cancer.Methods:A retrospective analysis was conducted on the clinical data of 307 patients preoperatively diag-nosed with early-stage cervical cancer who underwent surgical treatment at the Obstetrics and Gynecology De-partment of the Second Affiliated Hospital of Zhengzhou University from January 2018 to July 2023.R software was used to randomize the groups into a training set(n=231)and a validation set(n=76)in a 3∶1 ratio.Uni-variate and multivariate logistic regression analyses were employed to identify factors influencing lymph node me-tastasis in patients preoperatively diagnosed with early-stage cervical cancer.R software was used to establish a nomogram prediction model and draw receiver operating characteristic(ROC)curves and calibration curves for validation.Results:① The results of univariate logistic regression analysis showed that positive lymphovascular invasion,platelet-to-lymphocyte ratio(PLR)≥151.70,neutrophil-to-white blood cell ratio(NWR)≥0.65,plate-let-to-albumin ratio(PAR)≥ 4.94,preoperative systemic immune-inflammation index(SII)≥604.03,and sys-temic inflammatory response index(SIRI)≥ 1.05 were associated with lymph node metastasis(P<0.05).②Multivariate logistic regression analysis found that positive lymphovascular invasion,NWR≥0.65,and PAR≥4.94 were independent risk factors for lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer(OR>1,P<0.05).③ A nomogram was constructed to predict lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer.The ROC curve shows an area under the train-ing set curve(AUC)of 0.821 and a validation set AUC of 0.858.The calibration curve shows an average abso-lute error of 0.024 for the training set and 0.059 for the validation set.Conclusions:The prediction model for lymph node metastasis in cervical cancer constructed using preoperative inflammatory and immune nutritional indi-cators such as NWR,PAR is helpful for gynecological oncologists to predict lymph node metastasis in cervical cancer patients before surgery.
6.Construction and Validation of a Nomogram for Predicting Lymph Node Metas-tasis in Cervical Cancer Using Preoperative Inflammatory and Immune Nutri-tional Indicators
Xingyue XU ; Yilin GUO ; Lu WANG ; Mengqi LI ; Rui LI ; Fuhua LU ; Hu ZHAO
Journal of Practical Obstetrics and Gynecology 2024;40(8):645-650
Objective:To predict lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer based on preoperative inflammatory and immune nutritional indicators,and to construct a nomo-gram prediction model,providing a basis and tool for preoperative diagnosis of lymph node metastasis in cervical cancer.Methods:A retrospective analysis was conducted on the clinical data of 307 patients preoperatively diag-nosed with early-stage cervical cancer who underwent surgical treatment at the Obstetrics and Gynecology De-partment of the Second Affiliated Hospital of Zhengzhou University from January 2018 to July 2023.R software was used to randomize the groups into a training set(n=231)and a validation set(n=76)in a 3∶1 ratio.Uni-variate and multivariate logistic regression analyses were employed to identify factors influencing lymph node me-tastasis in patients preoperatively diagnosed with early-stage cervical cancer.R software was used to establish a nomogram prediction model and draw receiver operating characteristic(ROC)curves and calibration curves for validation.Results:① The results of univariate logistic regression analysis showed that positive lymphovascular invasion,platelet-to-lymphocyte ratio(PLR)≥151.70,neutrophil-to-white blood cell ratio(NWR)≥0.65,plate-let-to-albumin ratio(PAR)≥ 4.94,preoperative systemic immune-inflammation index(SII)≥604.03,and sys-temic inflammatory response index(SIRI)≥ 1.05 were associated with lymph node metastasis(P<0.05).②Multivariate logistic regression analysis found that positive lymphovascular invasion,NWR≥0.65,and PAR≥4.94 were independent risk factors for lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer(OR>1,P<0.05).③ A nomogram was constructed to predict lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer.The ROC curve shows an area under the train-ing set curve(AUC)of 0.821 and a validation set AUC of 0.858.The calibration curve shows an average abso-lute error of 0.024 for the training set and 0.059 for the validation set.Conclusions:The prediction model for lymph node metastasis in cervical cancer constructed using preoperative inflammatory and immune nutritional indi-cators such as NWR,PAR is helpful for gynecological oncologists to predict lymph node metastasis in cervical cancer patients before surgery.
7.Construction and Validation of a Nomogram for Predicting Lymph Node Metas-tasis in Cervical Cancer Using Preoperative Inflammatory and Immune Nutri-tional Indicators
Xingyue XU ; Yilin GUO ; Lu WANG ; Mengqi LI ; Rui LI ; Fuhua LU ; Hu ZHAO
Journal of Practical Obstetrics and Gynecology 2024;40(8):645-650
Objective:To predict lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer based on preoperative inflammatory and immune nutritional indicators,and to construct a nomo-gram prediction model,providing a basis and tool for preoperative diagnosis of lymph node metastasis in cervical cancer.Methods:A retrospective analysis was conducted on the clinical data of 307 patients preoperatively diag-nosed with early-stage cervical cancer who underwent surgical treatment at the Obstetrics and Gynecology De-partment of the Second Affiliated Hospital of Zhengzhou University from January 2018 to July 2023.R software was used to randomize the groups into a training set(n=231)and a validation set(n=76)in a 3∶1 ratio.Uni-variate and multivariate logistic regression analyses were employed to identify factors influencing lymph node me-tastasis in patients preoperatively diagnosed with early-stage cervical cancer.R software was used to establish a nomogram prediction model and draw receiver operating characteristic(ROC)curves and calibration curves for validation.Results:① The results of univariate logistic regression analysis showed that positive lymphovascular invasion,platelet-to-lymphocyte ratio(PLR)≥151.70,neutrophil-to-white blood cell ratio(NWR)≥0.65,plate-let-to-albumin ratio(PAR)≥ 4.94,preoperative systemic immune-inflammation index(SII)≥604.03,and sys-temic inflammatory response index(SIRI)≥ 1.05 were associated with lymph node metastasis(P<0.05).②Multivariate logistic regression analysis found that positive lymphovascular invasion,NWR≥0.65,and PAR≥4.94 were independent risk factors for lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer(OR>1,P<0.05).③ A nomogram was constructed to predict lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer.The ROC curve shows an area under the train-ing set curve(AUC)of 0.821 and a validation set AUC of 0.858.The calibration curve shows an average abso-lute error of 0.024 for the training set and 0.059 for the validation set.Conclusions:The prediction model for lymph node metastasis in cervical cancer constructed using preoperative inflammatory and immune nutritional indi-cators such as NWR,PAR is helpful for gynecological oncologists to predict lymph node metastasis in cervical cancer patients before surgery.
8.Construction and Validation of a Nomogram for Predicting Lymph Node Metas-tasis in Cervical Cancer Using Preoperative Inflammatory and Immune Nutri-tional Indicators
Xingyue XU ; Yilin GUO ; Lu WANG ; Mengqi LI ; Rui LI ; Fuhua LU ; Hu ZHAO
Journal of Practical Obstetrics and Gynecology 2024;40(8):645-650
Objective:To predict lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer based on preoperative inflammatory and immune nutritional indicators,and to construct a nomo-gram prediction model,providing a basis and tool for preoperative diagnosis of lymph node metastasis in cervical cancer.Methods:A retrospective analysis was conducted on the clinical data of 307 patients preoperatively diag-nosed with early-stage cervical cancer who underwent surgical treatment at the Obstetrics and Gynecology De-partment of the Second Affiliated Hospital of Zhengzhou University from January 2018 to July 2023.R software was used to randomize the groups into a training set(n=231)and a validation set(n=76)in a 3∶1 ratio.Uni-variate and multivariate logistic regression analyses were employed to identify factors influencing lymph node me-tastasis in patients preoperatively diagnosed with early-stage cervical cancer.R software was used to establish a nomogram prediction model and draw receiver operating characteristic(ROC)curves and calibration curves for validation.Results:① The results of univariate logistic regression analysis showed that positive lymphovascular invasion,platelet-to-lymphocyte ratio(PLR)≥151.70,neutrophil-to-white blood cell ratio(NWR)≥0.65,plate-let-to-albumin ratio(PAR)≥ 4.94,preoperative systemic immune-inflammation index(SII)≥604.03,and sys-temic inflammatory response index(SIRI)≥ 1.05 were associated with lymph node metastasis(P<0.05).②Multivariate logistic regression analysis found that positive lymphovascular invasion,NWR≥0.65,and PAR≥4.94 were independent risk factors for lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer(OR>1,P<0.05).③ A nomogram was constructed to predict lymph node metastasis in patients preoperatively diagnosed with early-stage cervical cancer.The ROC curve shows an area under the train-ing set curve(AUC)of 0.821 and a validation set AUC of 0.858.The calibration curve shows an average abso-lute error of 0.024 for the training set and 0.059 for the validation set.Conclusions:The prediction model for lymph node metastasis in cervical cancer constructed using preoperative inflammatory and immune nutritional indi-cators such as NWR,PAR is helpful for gynecological oncologists to predict lymph node metastasis in cervical cancer patients before surgery.
9.The value of prophylactic cranial irradiation in patients with limited-stage small cell lung cancer at different risk of brain metastasis
Xingyue LI ; Meng YAN ; Song GUAN ; Jia TIAN ; Jianian LAI ; Chunliu MENG ; Jintao MA ; Kai REN ; Xue LI ; Lujun ZHAO
Chinese Journal of Radiation Oncology 2024;33(7):606-613
Objective:To establish a brain metastasis (BM) prediction model for limited-stage small cell lung cancer (LS-SCLC) patients who achieved complete response (CR) or partial response (PR) after thoracic chemoradiotherapy, and to explore the value of prophylactic cranial irradiation (PCI) in different risk groups.Methods:Clinical data of 274 patients with LS-SCLC who achieved CR/PR after thoracic chemoradiotherapy in Tianjin Medical University Cancer Institute & Hospital from January 2010 to December 2021 were retrospectively analyzed, including 144 cases in the PCI group and 130 in the non-PCI group. The nomogram was developed based on variables determined by univariate and multivariate analyses in the non-PCI group. The bootstrap method, receiver operating characteristics (ROC) curve, calibration curve and decision curve analysis (DCA) were employed to evaluate the predictive power and clinical benefits of the model. Patients were stratified into high- and low-risk groups based on risk scores. The brain metastases-free survival (BMFS), progression-free survival (PFS), extracranial progression-free survival (ePFS) and overall survival (OS) were compared between patients with and without PCI in different risk-stratified populations using the log-rank test.Results:The nomogram included five variables: systemic immune inflammation index (SII), lymphocyte-to-monocyte ratio (LMR), pro-gastrin-releasing peptide precursor (ProGRP), neuron-specific enolase (NSE), and blood calcium. The area under the ROC curve (AUC) of the nomogram in predicting 1- and 2-year BMFS was 0.761 and 0.822. In the low-risk group, there was no significant difference in the BMFS ( P=0.374), PFS ( P=0.551), ePFS ( P=0.508) and OS ( P=0.767) between the PCI and non-PCI groups. In the high-risk group, PCI could significantly increase the BMFS ( P<0.001) and PFS ( P=0.022), while there was no significant difference in the ePFS ( P=0.963) and OS ( P=0.632). And propensity score-matching (PSM) analysis showed similar results. Conclusions:PCI does not improve OS in LS-SCLC patients regardless of high or low risk of BM. However, PCI significantly prolong the BMFS and PFS in patients at a high risk of BM.
10.Effect of Chaihuang Qingyi Huoxue Granule on Intestinal Microecology in Rats with Severe Acute Pancreatitis
Yijing REN ; Zhi LI ; Xin ZHOU ; Long ZHAO ; Xingyue WANG ; Chaoli JIANG ; Shanshan CHEN
Traditional Chinese Drug Research & Clinical Pharmacology 2024;35(10):1571-1580
Objective To explore the regulation of Chaihuang Qingyi Huoxue Granule on intestinal microecological changes in rats with severe acute pancreatitis (SAP) and the potential mechanism for its treatment of SAP. Methods Forty-eight rats were randomly divided into sham operation group (SHAM),SAP model group (SAP),and Chaihuang Qingyi Huoxue Granule (CH)group,with 16 rats in each group. Each group was further divided into 12 h and 24 h subgroups. The SAP model was induced by retrograde injection of 5% sodium taurocholate into the pancreaticobiliary duct through duodenal wall. The SHAM and SAP groups received normal saline by gavage,while the CH group received 1.2 g·kg-1 Chaihuang Qingyi Huoxue Granule solution by gavage every six hours. At 12 h and 24 h after operation,eight rats from each group were sacrificed to collect abdominal aortic blood,pancreatic and ileal tissues for analysis. Ascites,pancreatic and ileal tissues were observed. Serum amylase(AMY) and lipase (LPS) levels were measured biochemically. Pathological changes in pancreatic and ileal tissues were investigated by HE staining. Claudin-1 protein expression in ileal tissue was detected by Western Blot. Changes in the intestinal flora of ileocecal contents were analyzed by 16S rDNA high-throughput sequencing. Results Compared to the SHAM group at the same time points,the SAP group exhibited extensive pancreatic edema and necrosis. Serum AMY and LPS levels,pancreatic and ileal histopathological scores increased,and Claudin-1 protein expression in ileal tissue markedly decreased (all P<0.05). The differences in abundance of microbial community increased,while the evenness of community composition reduced. The microbial richness showed no significant change (P>0.05),but the microbial diversity decreased(P<0.05). Proteobacteria were dominant intestinal bacteria. Relative abundances of Oscillospira,Ruminococcus,Bifidobacterium,and Bacteroides S24-7 decreased,whereas relative abundances of Shigella and Allobaculum increased. The differences in abundance of microbial community reduced,and the evenness of community composition increased. The microbial richness showed no significant change(P>0.05),but the microbial diversity increased (P<0.05). Firmicutes and Bacteroidetes were the dominant intestinal bacteria. Relative abundances of Oscillospira,Ruminococcus,Bifidobacterium,and Bacteroides S24-7 increased,whereas relative abundances of Shigella and Allobaculum decreased. After the intervention of CH,pathological damage in ileal tissue was improved. The expression of Claudin-1 protein in the intestinal mucosal barrier increased compared to the model group(P<0.05). The differences in abundance of microbial community reduced,and the evenness of community composition increased. CH group showed an increase in some beneficial bacteria and decrease in pathogenic bacteria compared to model group. Conclusion Chaihuang Qingyi Huoxue Granule may reduce pancreas injury in rats with SAP,which may be involved in modulating the intestinal microecology and improving intestinal mucosal barrier function.

Result Analysis
Print
Save
E-mail