1.Integrated Optical and Magnetic Navigation for Simplified Percutaneous Transforaminal Endoscopic Lumbar Discectomy: A Novel Approach
Xing-Chen YAO ; Jun-Peng LIU ; Xin-Ru DU ; Li GUAN ; Yong HAI ; Jincai YANG ; Aixing PAN
Neurospine 2025;22(1):297-307
		                        		
		                        			 Objective:
		                        			This study aims to evaluate the clinical benefits of the integrated optical and magnetic surgical navigation system in assisting transforaminal endoscopic lumbar discectomy (TELD) for the treatment of lumbar disc herniation (LDH). 
		                        		
		                        			Methods:
		                        			A retrospective analysis was conducted on patients who underwent TELD for LDH at Beijing Chaoyang Hospital, Capital Medical University from November 2022 to December 2023. Patients treated with the integrated optical and magnetic surgical navigation system were defined as the navigation-guided TELD (Ng-TELD) group (30 cases), while those treated with the conventional x-ray fluoroscopy method were defined as the control group (31 cases). Record and compare baseline characteristics, surgical parameters, efficacy indicators, and adverse events between the 2 patient groups. 
		                        		
		                        			Results:
		                        			The average follow-up duration for the 61 patients was 11.8 months. Postoperatively, both groups exhibited significant relief from back and leg pain, which continued to improve over time. At the final follow-up, patients’ lumbar function and quality of life had significantly improved compared to preoperative levels (p < 0.05). The Ng-TELD group had significantly shorter total operation time (58.43 ± 12.37 minutes vs. 83.23 ± 25.90 minutes), catheter placement time (5.83 ± 1.09 minutes vs. 15.94 ± 3.00 minutes), decompression time (47.17 ± 11.98 minutes vs. 67.29 ± 24.23 minutes), and fewer intraoperative fluoroscopies (3.20 ± 1.45 vs. 16.58 ± 4.25) compared to the control group (p < 0.05). There were no significant differences between the groups in terms of efficacy evaluation indicators and hospital stay. At the final follow-up, the excellent and good rate of surgical outcomes assessed by the MacNab criteria was 98.4%, and the overall adverse event rate was 8.2%, with no statistically significant differences between the groups (p > 0.05). 
		                        		
		                        			Conclusion
		                        			This study demonstrates that the integrated optical and magnetic surgical navigation system can reduce the complexity of TELD, shorten operation time, and minimize radiation exposure for the surgeon, highlighting its promising clinical potential. 
		                        		
		                        		
		                        		
		                        	
2.Integrated Optical and Magnetic Navigation for Simplified Percutaneous Transforaminal Endoscopic Lumbar Discectomy: A Novel Approach
Xing-Chen YAO ; Jun-Peng LIU ; Xin-Ru DU ; Li GUAN ; Yong HAI ; Jincai YANG ; Aixing PAN
Neurospine 2025;22(1):297-307
		                        		
		                        			 Objective:
		                        			This study aims to evaluate the clinical benefits of the integrated optical and magnetic surgical navigation system in assisting transforaminal endoscopic lumbar discectomy (TELD) for the treatment of lumbar disc herniation (LDH). 
		                        		
		                        			Methods:
		                        			A retrospective analysis was conducted on patients who underwent TELD for LDH at Beijing Chaoyang Hospital, Capital Medical University from November 2022 to December 2023. Patients treated with the integrated optical and magnetic surgical navigation system were defined as the navigation-guided TELD (Ng-TELD) group (30 cases), while those treated with the conventional x-ray fluoroscopy method were defined as the control group (31 cases). Record and compare baseline characteristics, surgical parameters, efficacy indicators, and adverse events between the 2 patient groups. 
		                        		
		                        			Results:
		                        			The average follow-up duration for the 61 patients was 11.8 months. Postoperatively, both groups exhibited significant relief from back and leg pain, which continued to improve over time. At the final follow-up, patients’ lumbar function and quality of life had significantly improved compared to preoperative levels (p < 0.05). The Ng-TELD group had significantly shorter total operation time (58.43 ± 12.37 minutes vs. 83.23 ± 25.90 minutes), catheter placement time (5.83 ± 1.09 minutes vs. 15.94 ± 3.00 minutes), decompression time (47.17 ± 11.98 minutes vs. 67.29 ± 24.23 minutes), and fewer intraoperative fluoroscopies (3.20 ± 1.45 vs. 16.58 ± 4.25) compared to the control group (p < 0.05). There were no significant differences between the groups in terms of efficacy evaluation indicators and hospital stay. At the final follow-up, the excellent and good rate of surgical outcomes assessed by the MacNab criteria was 98.4%, and the overall adverse event rate was 8.2%, with no statistically significant differences between the groups (p > 0.05). 
		                        		
		                        			Conclusion
		                        			This study demonstrates that the integrated optical and magnetic surgical navigation system can reduce the complexity of TELD, shorten operation time, and minimize radiation exposure for the surgeon, highlighting its promising clinical potential. 
		                        		
		                        		
		                        		
		                        	
3.Research on the chemical compositions and their biological activities of Piper nigrum L.
Xing GAO ; Fengping ZHAO ; Wentao WANG ; Wei TIAN ; Canhui ZHENG ; Xin CHEN
Journal of Pharmaceutical Practice and Service 2025;43(7):313-319
		                        		
		                        			
		                        			Piper nigrum L. is an evergreen climbing vine, which belongs to the genus Piperia in the Piperaceae family. Piper nigrum L., which known as the “king of spices”, is used as both food and medicine. The main active substances in Piper nigrum L. are alkaloids mainly composed of amides, and essential oil, as well as phenolic compounds. In this paper, the chemical compositions, especially amide alkaloids, and their biological activities of Piper nigrum L. were summarized. These studies showed that Piper nigrum L., as a medicinal and food plant, had a wide range of biological activities and was deserved further research and in-depth utilization.
		                        		
		                        		
		                        		
		                        	
4.Efficacy of implantable neuromuscular electrical stimulation system on stress urinary incontinence model in female rats
Bohong LONG ; Chen LI ; Han DENG ; Haoyu SUN ; Limin LIAO ; Xing LI
Journal of Modern Urology 2025;30(5):438-441
		                        		
		                        			
		                        			Objective: To investigate the efficacy of implantable neuromuscular electrical stimulation system on stress urinary incontinence (SUI) model in female rats. Methods: A total of 21 female infertile SD rats were randomly divided into the control,sham stimulation,and stimulation groups,with 7 rats in each group.All rats received vaginal dilation (VD) to simulate postpartum SUI.One week after VD,the control group was given normal feeding,stimulators were implanted in the pelvic floor muscles of the sham stimulation and stimulation groups.The sham stimulation group received normal feeding for 2 weeks,and the stimulation group received pelvic floor electrical stimulation (PFES) for 2 consecutive weeks.The leak point pressure (LPP) of each rat was measured with cystometry before VD (baseline value),1 week after VD,and 2 weeks after PFES. Results: In the control group and sham stimulation group,LPP increased after 2 weeks of treatment compared with that after 1 week of VD,but it still did not return to the baseline level (P<0.001).In the stimulation group,after 2 consecutive weeks of PFES,LPP increased significantly compared with that 1 week after VD,and returned to the baseline value (P>0.05).There was no significant difference in the LPP baseline values and levels after 1 week of VD among the 3 groups (P>0.05).The LPP in the stimulation group after 2 weeks of PFES was significantly higher than that in the sham stimulation group and stimulation group (P<0.001). Conclusion: The implantable neuromuscular electrical stimulation system is effective in short-term intervention of SUI in female rats,the further studies are needed to confirm the long-term efficacy and safety of the system,the optimal stimulation sites,optimal stimulation parameters,and potential mechanisms of action.
		                        		
		                        		
		                        		
		                        	
5.The Mesencephalic Locomotor Region for Locomotion Control
Xing-Chen GUO ; Yan XIE ; Xin-Shuo WEI ; Wen-Fen LI ; Ying-Yu SUN
Progress in Biochemistry and Biophysics 2025;52(7):1804-1816
		                        		
		                        			
		                        			Locomotion, a fundamental motor function encompassing various forms such as swimming, walking, running, and flying, is essential for animal survival and adaptation. The mesencephalic locomotor region (MLR), located at the midbrain-hindbrain junction, is a conserved brain area critical for controlling locomotion. This review highlights recent advances in understanding the MLR’s structure and function across species, from lampreys to mammals and birds, with a particular focus on insights gained from optogenetic studies in mammals. The goal is to uncover universal strategies for MLR-mediated locomotor control. Electrical stimulation of the MLR in species such as lampreys, salamanders, cats, and mice initiates locomotion and modulates speed and patterns. For example, in lampreys, MLR stimulation induces swimming, with increased intensity or frequency enhancing propulsive force. Similarly, in salamanders, graded stimulation transitions locomotor outputs from walking to swimming. Histochemical studies reveal that effective MLR stimulation sites colocalize with cholinergic neurons, suggesting a conserved neurochemical basis for locomotion control. In mammals, the MLR comprises two key nuclei: the cuneiform nucleus (CnF) and the pedunculopontine nucleus (PPN). Both nuclei contain glutamatergic and GABAergic neurons, with the PPN additionally housing cholinergic neurons. Optogenetic studies in mice by selectively activating glutamatergic neurons have demonstrated that the CnF and PPN play distinct roles in motor control: the CnF drives rapid escape behaviors, while the PPN regulates slower, exploratory movements. This functional specialization within the MLR allows animals to adapt their locomotion patterns and speed in response to environmental demands and behavioral objectives. Similar to findings in lampreys, the CnF and PPN in mice transmit motor commands to spinal effector circuits by modulating the activity of brainstem reticular formation neurons. However, they achieve this through distinct reticulospinal pathways, enabling the generation of specific behaviors. Further insights from monosynaptic rabies viral tracing reveal that the CnF and PPN integrate inputs from diverse brain regions to produce context-appropriate behaviors. For instance, glutamatergic neurons in the PPN receive signals from other midbrain structures, the basal ganglia, and medullary nuclei, whereas glutamatergic neurons in the CnF rarely receive inputs from the basal ganglia but instead are strongly influenced by the periaqueductal grey and inferior colliculus within the midbrain. These differential connectivity patterns underscore the specialized roles of the CnF and PPN in motor control, highlighting their unique contributions to coordinating locomotion. Birds exhibit exceptional flight capabilities, yet the avian MLR remains poorly understood. Comparative studies suggest that the pedunculopontine tegmental nucleus (PPTg) in birds is homologous to the mammalian PPN, which contains cholinergic neurons, while the intercollicular nucleus (ICo) or nucleus isthmi pars magnocellularis (ImC) may correspond to the CnF. These findings provide important clues for identifying the avian MLR and elucidating its role in flight control. However, functional validation through targeted experiments is urgently needed to confirm these hypotheses. Optogenetics and other advanced techniques in mice have greatly advanced MLR research, enabling precise manipulation of specific neuronal populations. Future studies should extend these methods to other species, particularly birds, to explore unique locomotor adaptations. Comparative analyses of MLR structure and function across species will deepen our understanding of the conserved and evolved features of motor control, revealing fundamental principles of locomotion regulation throughout evolution. By integrating findings from diverse species, we can uncover how the MLR has been adapted to meet the locomotor demands of different environments, from aquatic to aerial habitats. 
		                        		
		                        		
		                        		
		                        	
6.Research progress on the treatment role and chemical synthesis methods of isoselenoazolones
Wentao WANG ; Xing GAO ; Fengping ZHAO ; Canhui ZHENG ; Xin CHEN
Journal of Pharmaceutical Practice and Service 2025;43(8):367-372
		                        		
		                        			
		                        			Glutathione peroxidase (GSH-Px) is a key selenoenzyme that protects the body from oxidative damage. A series of small molecular organic selenium compounds have been designed and synthesized as functional mimics of GPx, among which isoselenazolones are the most widely studied. Taking ebselen as a representative, the catalytic mechanism of isoselenazolones in mimicing GSH-Px activity in vivo, the therapeutic effects of isoselenazolones in stroke, sensorineurium deafness and tinnitus, treatmentresistant depression (TRD) and coronavirus disease 2019 (COVID-19), and research on their chemical synthesis methods were summarized and discussed in this paper.
		                        		
		                        		
		                        		
		                        	
7.Clinical Efficacy of Tangning Tongluo Tablets for Nonproliferative Diabetic Retinopathy
Fuwen ZHANG ; Junguo DUAN ; Wen XIA ; Tiantian SUN ; Yuheng SHI ; Shicui MEI ; Xiangxia LUO ; Xing LI ; Yujie PAN ; Yong DENG ; Chuanlian RAN ; Hao CHEN ; Li PEI ; Shuyu YANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):132-139
		                        		
		                        			
		                        			ObjectiveTo observe the clinical efficacy and safety of Tangning Tongluo tablets in the treatment of nonproliferative diabetic retinopathy (DR). MethodsFourteen research centers participated in this study, which spanned a time interval from September 2021 to May 2023. A total of 240 patients with nonproliferative DR were included and randomly assigned into an observation group (120 cases) and a control group (120 cases). The observation group was treated with Tangning Tongluo tablets, and the control group with calcium dobesilate capsules. Both groups were treated for 24 consecutive weeks. The vision, DR progression rate, retinal microhemangioma, hemorrhage area, exudation area, glycosylated hemoglobin (HbA1c) level, and TCM syndrome score were assessed before and after treatment, and the safety was observed. ResultsThe vision changed in both groups after treatment (P<0.05), and the observation group showed higher best corrected visual acuity (BCVA) than the control group (P<0.05). The DR progression was slow with similar rates in the two groups. The fundus hemorrhage area and exudation area did not change significantly after treatment in both groups, while the observation group outperformed the control group in reducing the fundus hemorrhage area and exudation area. There was no significant difference in the number of microhemangiomas between the two groups before treatment. After treatment, the number of microhemangiomas decreased in both the observation group (Z=-1.437, P<0.05) and the control group (Z=-2.238, P<0.05), and it showed no significant difference between the two groups. As the treatment time prolonged, the number of microhemangiomas gradually decreased in both groups. There was no significant difference in the HbA1c level between the two groups before treatment. After treatment, the decline in the HbA1c level showed no significant difference between the two groups. The TCM syndrome score did not have a statistically significant difference between the two groups before treatment. After treatment, neither the TCM syndrome score nor the response rate had significant difference between the two groups. With the extension of the treatment time, both groups showed amelioration of TCM syndrome compared with the baseline. ConclusionTangning Tongluo tablets are safe and effective in the treatment of nonproliferative DR, being capable of improving vision and reducing hemorrhage and exudation in the fundus. 
		                        		
		                        		
		                        		
		                        	
8.Research Progress on Human Umbilical Cord Mesenchymal Stem Cells in the Treatment of Knee Osteoarthritis
Jin GONG ; Jinjin ZHANG ; Lili CHEN ; Hui WANG ; Yanchao XING
Medical Journal of Peking Union Medical College Hospital 2025;16(1):75-82
Knee osteoarthritis (KOA) is a prevalent degenerative joint disease characterized by synovial inflammation, cartilage loss. Often manifesting as joint pain and limited mobility, it severely affects the quality of life of patients. Traditional treatment methods such as pharmacological injections and surgical interventions primarily aim to alleviate symptoms but have limited effects on cartilage repair. Human umbilical cord mesenchymal stem cells (hUC-MSCs), due to their anti-inflammatory and chondrogenic capabilities, is considered a new hope for the treatment of KOA. This article synthesizes the latest research findings from both domestic and international sources to discuss the theoretical basis for the clinical application of hUC-MSCs in treating KOA, clinical study design, and efficacy evaluation. It also addresses the challenges in the clinical application of hUC-MSCs and explores future directions, in the hope of providing feasible theoretical support for the treatment of KOA with hUC-MSCs.
9.Mechanism by which Angelica sinensis polysaccharide regulates bone marrow hematopoietic microenvironment for aplastic anemia
Jiaqi FU ; Xiubao CHEN ; Xing CUI ; Zetao CHEN
Chinese Journal of Tissue Engineering Research 2025;29(1):44-51
		                        		
		                        			
		                        			BACKGROUND:How to improve the hematopoietic microenvironment is a hot topic in the treatment of aplastic anemia. OBJECTIVE:To explore the action mechanism of Angelica sinensis polysaccharide in the treatment of aplastic anemia by combining GEO sequencing analysis,network pharmacology,and experimental validation. METHODS:Aplastic anemia-related differentially expressed genes were obtained from GEO database,and gene ontology and gene set enrichment analysis were performed.The active components and targets of Angelica sinensis polysaccharide were obtained by combining the literature with PubChem,SwissTargetPrediction,and PharmMapper databases.After the intersection targets were taken,STRING and Cytoscape were used to construct protein-protein interaction network,and gene ontology and Kyoto encyclopedia of genes and genomes enrichment analysis was performed.Mouse model of aplastic anemia was established,and the effect and action mechanism of Angelica sinensis polysaccharide on aplastic anemia were verified by blood cell analyzer,flow cytometry,ELISA,immunohistochemistry,immunofluorescence,and western blot assay. RESULTS AND CONCLUSION:(1)A total of 834 differentially expressed genes were screened,which were involved in biological processes such as cell development,hematopoiesis,and myeloid cell differentiation.(2)347 targets related to Angelica sinensis polysaccharide were retrieved and 77 potential therapeutic genes were screened.Among them,the degree values of angiogenic,apoptotic,and immune-related factors such as VEGFA,EGLN1,Bcl-2,interferon-γ,interleukin-2,interleukin-4,and interleukin-6 were significant.(3)KEGG pathway enrichment analysis revealed that the therapeutic targets were mainly enriched in Th17 cell differentiation,NK-related cytotoxicity,cell adhesion factors such as interferon-γ,interleukin-2,and interleukin-4 related signaling pathways.(4)Animal experiments showed that Angelica sinensis polysaccharide significantly improved bone marrow haematopoiesis,increased peripheral blood cell,and bone marrow single nucleated cell counts,and improved the survival rate of mice.Compared with the model group,mice in the Angelica sinensis polysaccharide group showed a significant decrease in the ratio of Th1/Th2 cells(P<0.01),a decrease in the expression level of interferon-γ(P<0.01),an increase in the level of interleukin-4(P<0.05),a significant increase in the level of VEGFA(P<0.01),a significant decrease in EGLN1(P<0.01),a significant decrease in apoptosis rate of bone marrow single nucleated cells and reactive oxygen species level(P<0.01),and a significant increase in cleaved Caspase-3 protein expression(P<0.01),and a significant decrease in Bcl-2/Bax ratio(P<0.01).(5)These findings show that Angelica sinensis polysaccharide can improve hematopoiesis of aplastic anemia mice by regulating aberrant T-cell subsets and promoting angiogenesis to improve hematopoietic microenvironment,and inhibiting apoptosis of bone marrow mononuclear cells.
		                        		
		                        		
		                        		
		                        	
10.Constructing a model of degenerative scoliosis using finite element method:biomechanical analysis in etiology and treatment
Kai HE ; Wenhua XING ; Shengxiang LIU ; Xianming BAI ; Chen ZHOU ; Xu GAO ; Yu QIAO ; Qiang HE ; Zhiyu GAO ; Zhen GUO ; Aruhan BAO ; Chade LI
Chinese Journal of Tissue Engineering Research 2025;29(3):572-578
		                        		
		                        			
		                        			BACKGROUND:Degenerative scoliosis is defined as a condition that occurs in adulthood with a coronal cobb angle of the spine>10° accompanied by sagittal deformity and rotational subluxation,which often produces symptoms of spinal cord and nerve compression,such as lumbar pain,lower limb pain,numbness,weakness,and neurogenic claudication.The finite element method is a mechanical analysis technique for computer modelling,which can be used for spinal mechanics research by building digital models that can realistically restore the human spine model and design modifications. OBJECTIVE:To review the application of finite element method in the etiology and treatment of degenerative scoliosis. METHODS:The literature databases CNKI,PubMed,and Web of Science were searched for articles on the application of finite element method in degenerative scoliosis published before October 2023.Search terms were"finite element analysis,biomechanics,stress analysis,degenerative scoliosis,adult spinal deformity"in Chinese and English.Fifty-four papers were finally included. RESULTS AND CONCLUSION:(1)The biomechanical findings from the degenerative scoliosis model constructed using the finite element method were identical to those from the in vivo experimental studies,which proves that the finite element method has a high practical value in degenerative scoliosis.(2)The study of the etiology and treatment of degenerative scoliosis by the finite element method is conducive to the prevention of the occurrence of the scoliosis,slowing down the progress of the scoliosis,the development of a more appropriate treatment plan,the reduction of complications,and the promotion of the patients'surgical operation.(3)The finite element method has gradually evolved from a single bony structure to the inclusion of soft tissues such as muscle ligaments,and the small sample content is increasingly unable to meet the research needs.(4)The finite element method has much room for exploration in degenerative scoliosis.
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail