1.Application of Recombinant Collagen in Biomedicine
Huan HU ; Hong ZHANG ; Jian WANG ; Li-Wen WANG ; Qian LIU ; Ning-Wen CHENG ; Xin-Yue ZHANG ; Yun-Lan LI
Progress in Biochemistry and Biophysics 2025;52(2):395-416
Collagen is a major structural protein in the matrix of animal cells and the most widely distributed and abundant functional protein in mammals. Collagen’s good biocompatibility, biodegradability and biological activity make it a very valuable biomaterial. According to the source of collagen, it can be broadly categorized into two types: one is animal collagen; the other is recombinant collagen. Animal collagen is mainly extracted and purified from animal connective tissues by chemical methods, such as acid, alkali and enzyme methods, etc. Recombinant collagen refers to collagen produced by gene splicing technology, where the amino acid sequence is first designed and improved according to one’s own needs, and the gene sequence of improved recombinant collagen is highly consistent with that of human beings, and then the designed gene sequence is cloned into the appropriate vector, and then transferred to the appropriate expression vector. The designed gene sequence is cloned into a suitable vector, and then transferred to a suitable expression system for full expression, and finally the target protein is obtained by extraction and purification technology. Recombinant collagen has excellent histocompatibility and water solubility, can be directly absorbed by the human body and participate in the construction of collagen, remodeling of the extracellular matrix, cell growth, wound healing and site filling, etc., which has demonstrated significant effects, and has become the focus of the development of modern biomedical materials. This paper firstly elaborates the structure, type, and tissue distribution of human collagen, as well as the associated genetic diseases of different types of collagen, then introduces the specific process of producing animal source collagen and recombinant collagen, explains the advantages of recombinant collagen production method, and then introduces the various systems of expressing recombinant collagen, as well as their advantages and disadvantages, and finally briefly introduces the application of animal collagen, focusing on the use of animal collagen in the development of biopharmaceutical materials. In terms of application, it focuses on the use of animal disease models exploring the application effects of recombinant collagen in wound hemostasis, wound repair, corneal therapy, female pelvic floor dysfunction (FPFD), vaginal atrophy (VA) and vaginal dryness, thin endometritis (TE), chronic endometritis (CE), bone tissue regeneration in vivo, cardiovascular diseases, breast cancer (BC) and anti-aging. The mechanism of action of recombinant collagen in the treatment of FPFD and CE was introduced, and the clinical application and curative effect of recombinant collagen in skin burn, skin wound, dermatitis, acne and menopausal urogenital syndrome (GSM) were summarized. From the exploratory studies and clinical applications, it is evident that recombinant collagen has demonstrated surprising effects in the treatment of all types of diseases, such as reducing inflammation, promoting cell proliferation, migration and adhesion, increasing collagen deposition, and remodeling the extracellular matrix. At the end of the review, the challenges faced by recombinant collagen are summarized: to develop new recombinant collagen types and dosage forms, to explore the mechanism of action of recombinant collagen, and to provide an outlook for the future development and application of recombinant collagen.
2.Bufei Tongbi Decoction Inhibits Pulmonary Fibrosis in Diabetic Rats via TGF-β1/p-Smad3 Signaling Pathway
Gang WANG ; Rensong YUE ; Qiyue YANG ; Dan ZHANG ; Xin CHEN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(10):176-184
ObjectiveTo study the effect of Bufei Tongbi decoction on pulmonary fibrosis in diabetic rats via the transforming growth factor-β1 (TGF-β1)/phosphorylated Smad family member 3 (p-Smad3) signaling pathway. MethodsStreptozotocin (60 mg·kg-1) and bleomycin (24.80 U·kg-1) were used to prepare the rat model of diabetes with pulmonary fibrosis by intratracheal injection. Sixty rats were randomly assigned into blank, model, low-, medium-, and high-dose (3.98, 7.95, and 15.90 g·kg-1, respectively) Bufei Tongbi decoction, and pirfenidone (0.36 mg·kg-1) groups (n=10). The successfully modeled rats in each group were administrated with corresponding agents once per day for four consecutive weeks. After drug administration, fasting blood glucose and lung function indicators were measured. Chemical immunoassay was employed to determine the serum levels of hydroxyproline (Hyp), hyaluronic acid (HA), and laminin (LN). The lung index was determined by the wet and dry methods. The pathological changes in the lung tissue were observed by hematoxylin-eosin (HE) staining, and the degree of fibrosis was detected by Masson staining. The mRNA and protein levels of TGF-β1, p-Smad3, Smad3, α-smooth muscle actin (α-SMA), collagen type Ⅰ alpha 1 (Col1A1), and fibronectin were determined by PCR and Western blotting, respectively. ResultsCompared with the blank group, the model group showed alveolar septa thickening, obvious thickening of the basement membrane of pulmonary blood vessels, severe destruction of the alveolar structure, structural disarrangement of the lung parenchyma, and an increase in the proportion of inflammatory cell infiltration in the lung tissue, together with a large amount of blue collagen deposition and a large amount of collagen fibroplasia in the bronchial wall, vessel wall, interstitium, and alveolar wall, which indicated severe fibrosis. Bufei Tongbi decoction groups and the pirfenidone group showed lower fasting blood glucose level (P<0.05) and higher forced vital capacity (FVC), cytoplasmic dynein (Cydn), FEV0.3/FEV ratio, and lung index (P<0.05) than the model group. Moreover, these groups demonstrated alleviated lung fibrosis, elevated Hyp, HA, and LN levels, down-regulated mRNA levels of α-SMA, Col1A1, and fibronectin, and down-regulated protein levels of TGF-β1, Smad3, p-Smad3, α-SMA, Col1A1, and fibronectin (P<0.05). ConclusionBufei Tongbi decoction can inhibit pulmonary fibrosis in diabetic rats by inhibiting the TGF-β1/p-Smad3 signaling pathway.
3.Heterogeneity of Adipose Tissue From a Single-cell Transcriptomics Perspective
Yong-Lang WANG ; Si-Si CHEN ; Qi-Long LI ; Yu GONG ; Xin-Yue DUAN ; Ye-Hui DUAN ; Qiu-Ping GUO ; Feng-Na LI
Progress in Biochemistry and Biophysics 2025;52(4):820-835
Adipose tissue is a critical energy reservoir in animals and humans, with multifaceted roles in endocrine regulation, immune response, and providing mechanical protection. Based on anatomical location and functional characteristics, adipose tissue can be categorized into distinct types, including white adipose tissue (WAT), brown adipose tissue (BAT), beige adipose tissue, and pink adipose tissue. Traditionally, adipose tissue research has centered on its morphological and functional properties as a whole. However, with the advent of single-cell transcriptomics, a new level of complexity in adipose tissue has been unveiled, showing that even under identical conditions, cells of the same type may exhibit significant variation in morphology, structure, function, and gene expression——phenomena collectively referred to as cellular heterogeneity. Single-cell transcriptomics, including techniques like single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq), enables in-depth analysis of the diversity and heterogeneity of adipocytes at the single-cell level. This high-resolution approach has not only deepened our understanding of adipocyte functionality but also facilitated the discovery of previously unidentified cell types and gene expression patterns that may play key roles in adipose tissue function. This review delves into the latest advances in the application of single-cell transcriptomics in elucidating the heterogeneity and diversity within adipose tissue, highlighting how these findings have redefined the understanding of cell subpopulations within different adipose depots. Moreover, the review explores how single-cell transcriptomic technologies have enabled the study of cellular communication pathways and differentiation trajectories among adipose cell subgroups. By mapping these interactions and differentiation processes, researchers gain insights into how distinct cellular subpopulations coordinate within adipose tissues, which is crucial for maintaining tissue homeostasis and function. Understanding these mechanisms is essential, as dysregulation in adipose cell interactions and differentiation underlies a range of metabolic disorders, including obesity and diabetes mellitus type 2. Furthermore, single-cell transcriptomics holds promising implications for identifying therapeutic targets; by pinpointing specific cell types and gene pathways involved in adipose tissue dysfunction, these technologies pave the way for developing targeted interventions aimed at modulating specific adipose subpopulations. In summary, this review provides a comprehensive analysis of the role of single-cell transcriptomic technologies in uncovering the heterogeneity and functional diversity of adipose tissues.
4.Process Optimization and Health Risk Assessment of Calcined Haematitum Based on QbD Concept
Yue YANG ; Jingwei ZHOU ; Jialiang ZOU ; Guorong MEI ; Yifan SHI ; Lei ZHONG ; Jiaojiao WANG ; Xuelian GAN ; Dewen ZENG ; Xin CHEN ; Lin CHEN ; Hongping CHEN ; Shilin CHEN ; Yuan HU ; Youping LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):187-196
ObjectiveTo investigate the processing technology of calcined Haematitum based on the concept of quality by design(QbD) and to assess its health risk. MethodsTaking whole iron content, Fe2+ dissolution content and looseness as critical quality attributes(CQAs), and calcination temperature, calcination time, spreading thickness and particle size as critical process parameters(CPPs) determined by the failure mode and effect analysis(FMEA), the processing technology of calcined Haematitum was optimized by orthogonal test combined with analytic hierarchy process-criteria importance through intercriteria correlation(AHP-CRITIC) hybrid weighting method. The contents of heavy metals and harmful elements were determined by inductively coupled plasma mass spectrometry, and the health risk assessment was carried out by daily exposure(EXP), target hazard quotient(THQ) and lifetime cancer risk(LCR), and the theoretical value of the maximum limit was deduced. ResultsThe optimal processing technology for calcined Haematitum was calcination at 650 ℃, calcination time of 1 h, particle size of 0.2-0.5 cm, spreading thickness of 1 cm, and vinegar quenching for 1 time[Haematitum-vinegar(10:3)]. The contents of 5 heavy metals and harmful elements in 13 batches of calcined Haematitum were all decreased with reductions of up to 5-fold. The cumulative THQ of 2 batches of samples was>1, while the cumulative THQ of all batches of Haematitum was>1. The LCR of As in 1 batches of Haematitum was 1×10-6-1×10-4, and the LCR of the rest was<1×10-6, and the LCRs of calcined Haematitum were all<1×10-6, indicating that the carcinogenic risk of calcined Haematitum was low, but special attention should still be paid to Haematitum medicinal materials. Preliminary theoretical values of the maximum limits of Cu, As, Cd, Pb and Hg were formulated as 1 014, 25, 17, 27, 7 mg·kg-1. ConclusionThe optimized processing technology of calcined Haematitum is stable and feasible, and the contents of heavy metals and harmful elements are reduced after processing. Preliminary theoretical values of the maximum limits of Cu, As, Cd, Pb and Hg are formulated to provide a scientific basis for the formulation of standards for the limits of harmful elements in Haematitum.
5.Process Optimization and Health Risk Assessment of Calcined Haematitum Based on QbD Concept
Yue YANG ; Jingwei ZHOU ; Jialiang ZOU ; Guorong MEI ; Yifan SHI ; Lei ZHONG ; Jiaojiao WANG ; Xuelian GAN ; Dewen ZENG ; Xin CHEN ; Lin CHEN ; Hongping CHEN ; Shilin CHEN ; Yuan HU ; Youping LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):187-196
ObjectiveTo investigate the processing technology of calcined Haematitum based on the concept of quality by design(QbD) and to assess its health risk. MethodsTaking whole iron content, Fe2+ dissolution content and looseness as critical quality attributes(CQAs), and calcination temperature, calcination time, spreading thickness and particle size as critical process parameters(CPPs) determined by the failure mode and effect analysis(FMEA), the processing technology of calcined Haematitum was optimized by orthogonal test combined with analytic hierarchy process-criteria importance through intercriteria correlation(AHP-CRITIC) hybrid weighting method. The contents of heavy metals and harmful elements were determined by inductively coupled plasma mass spectrometry, and the health risk assessment was carried out by daily exposure(EXP), target hazard quotient(THQ) and lifetime cancer risk(LCR), and the theoretical value of the maximum limit was deduced. ResultsThe optimal processing technology for calcined Haematitum was calcination at 650 ℃, calcination time of 1 h, particle size of 0.2-0.5 cm, spreading thickness of 1 cm, and vinegar quenching for 1 time[Haematitum-vinegar(10:3)]. The contents of 5 heavy metals and harmful elements in 13 batches of calcined Haematitum were all decreased with reductions of up to 5-fold. The cumulative THQ of 2 batches of samples was>1, while the cumulative THQ of all batches of Haematitum was>1. The LCR of As in 1 batches of Haematitum was 1×10-6-1×10-4, and the LCR of the rest was<1×10-6, and the LCRs of calcined Haematitum were all<1×10-6, indicating that the carcinogenic risk of calcined Haematitum was low, but special attention should still be paid to Haematitum medicinal materials. Preliminary theoretical values of the maximum limits of Cu, As, Cd, Pb and Hg were formulated as 1 014, 25, 17, 27, 7 mg·kg-1. ConclusionThe optimized processing technology of calcined Haematitum is stable and feasible, and the contents of heavy metals and harmful elements are reduced after processing. Preliminary theoretical values of the maximum limits of Cu, As, Cd, Pb and Hg are formulated to provide a scientific basis for the formulation of standards for the limits of harmful elements in Haematitum.
6.The constituent elements, experiences, and popularization significance of the palliative care model of integrated elderly care and medical services
Zehuan HUANG ; Mengdong XIN ; Lidan QI ; Long ZHAO ; Minyu WANG ; Lu QIN ; Zhenhua LU ; Zhao LI ; Yue HE ; Xi ZENG
Chinese Medical Ethics 2025;38(7):914-923
Under the trend of increasing aging, integrated elderly care and medical services is an important measure to optimize the supply of elderly care services and promote the good death of the elderly. Using the cooperative production theory and the classical grounded theory, a qualitative analysis was conducted on 38 cases of elderly palliative care and 25 cases of hospital-based palliative care under the integrated elderly care and medical services model from a hospital in Nanning City using Nvivo 20.0 software. This paper found that the integrated elderly care and medical services mode emphasized the deep integration of medical and elderly care services by integrating resources and improving service efficiency, to achieve the basic experience of comprehensive health care for the elderly. The promotion of these experiences has a positive significance for building a multi-agent cooperative production system, strengthening personnel training, perfecting the performance distribution mechanism, and further promoting the development of the national palliative care pilot.
7.Exploring Mechanism of Hei Xiaoyaosan Regulating PI3K/Akt Pathway to Improve Learning and Memory Ability of Insomnia Rats with Liver Depression Syndrome Based on Transcriptomics
Jiamin LIU ; Yale WANG ; Hai HUANG ; Yue LI ; Xin FAN ; Pengpeng LIANG ; Shizhao ZHANG ; Mei YAN ; Guiyun LI ; Hongyan WU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(16):114-125
ObjectiveBased on transcriptomics, to explore the mechanism of Hei Xiaoyaosan regulating the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway to improve the learning and memory ability of insomnia rats with liver depression syndrome. MethodsSixty 8-week-old male SD rats were randomly divided into the blank group, model group, eszopiclone group (0.09 mg·kg-1), and low, medium, and high dose groups of Hei Xiaoyaosan (3.82, 7.65, 15.30 g·kg-1), with ten rats in each group. Except for the blank group, the other groups were induced insomnia rat model with liver depression by chronic restraint, tail clamping stimulation and intraperitoneal injection of p-chlorophenylalanine (PCPA). Each treatment group received intragastric administration according to the specified dosage, once a day for 14 consecutive days. The pentobarbital sodium cooperative sleep test, open field test, and Morris water maze test were used to test the sleep quality, depressive-like behavior, and learning and memory abilities of rats. Additionally, enzyme-linked immunosorbent assay (ELISA) was used to detect the contents of 5-hydroxytryptamine (5-HT), γ-aminobutyric acid (GABA), brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF) and nitric oxide (NO) in hippocampus. Hematoxylin-eosin (HE) staining was performed to observe pathological changes of the hippocampal tissue, while terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL) was used to evaluate apoptosis of hippocampal neurons. Transcriptomic sequencing technology was employed to identify differentially expressed genes in hippocampus between the model group and the blank group, as well as between the medium-dose group of Hei Xiaoyaosan and the model group. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed on the intersecting genes. Subsequently, the enriched key genes and signaling pathways were analyzed and verified. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was utilized to assess the mRNA expression levels of phosphatase and tensin homolog (PTEN), B-cell lymphoma-2 (Bcl-2)-like protein 11 (BCL2L11), and mitogen-activated protein kinase 1 (MAPK1) in hippocampus, and Western blot was employed to evaluate the protein expressions of PI3K, phosphorylation (p)-PI3K, Akt, p-Akt, Bcl-2, Bcl-2-associated X protein (Bax), and cleaved Caspase-3 in the same tissue. ResultsCompared with the blank group, the model group exhibited a reduction in body weight, an increase in sleep latency, and a decrease in sleep duration (P<0.01). Additionally, rats showed obvious depression-like behavior, and their learning and memory abilities decreased. Furthermore, the contents of 5-HT, GABA, NO, BDNF and GDNF in hippocampus decreased (P<0.01). Histological examination revealed a disorganized cell arrangement in the CA1 region of the hippocampus, characterized by irregular cell shapes, a reduced cell count, deeply stained and pyknotic nuclei, increased vacuolar degeneration, and an elevated apoptosis rate (P<0.01). Compared with the model group, the body weight of the high and medium dose groups of Hei Xiaoyaosan increased, the sleep latency shortened and the sleep time prolonged (P<0.05, P<0.01). Additionally, depression-like behavior and learning and memory abilities of rats were significantly improved, the levels of 5-HT, GABA, NO, BDNF and GDNF in the hippocampus increased (P<0.05, P<0.01). These interventions also ameliorated pathological damage in the hippocampal CA1 area and reduced the apoptosis of hippocampal neurons (P<0.01). Transcriptomic sequencing results indicated that Hei Xiaoyaosan might exert a therapeutic effect by regulating PI3K/Akt pathway through key mRNAs such as PTEN, BCL2L11, and MAPK1. The roles of these key mRNAs and proteins within PI3K/Akt pathway were further validated. In comparison to the blank group, the expression levels of PTEN, BCL2L11 and MAPK1 mRNA in the hippocampus of rats in the model group were increased (P<0.01), while the protein expression levels of p-PI3K, p-Akt and Bcl-2 were decreased (P<0.01), and the protein expression levels of PTEN, Bax and cleaved Caspase-3 were increased (P<0.01). Compared with the model group, the high-dose and medium-dose groups of Hei Xiaoyaosan could down-regulate the expressions of PTEN, BCL2L11 and MAPK1 mRNAs (P<0.01), up-regulate the expressions of p-PI3K, p-Akt and Bcl-2 proteins (P<0.01), and down-regulate the protein expressions of PTEN, Bax and cleaved Caspase-3 (P<0.05, P<0.01). ConclusionHei Xiaoyaosan may regulate PI3K/Akt signaling pathway by down-regulating expressions of key genes such as PTEN, BCL2L11 and MAPK1, and thus improve the learning and memory abilities of insomnia rats with liver depression syndrome.
8.Analysis of pollution of PM 2.5 in children s bedrooms caused by using solid fuels and the influencing factors
ZHENG Ping, SHI Chunli, XIN Shuzhi, CHEN Shunqiang, SHEN Yue, ZHANG Bei, XU Ning, WANG Qiang
Chinese Journal of School Health 2025;46(7):932-936
Objective:
To investigate the indoor fine particulate matter (PM 2.5 ) pollution and its influencing factors in children s bedrooms using solid fuel, so as to provide evidence for effective strategy to reduce PM 2.5 pollution.
Methods:
From December 2019 to November 2020, 198 households (108 in the north, 90 in the south) from two pilots in the north(Jiamusi in Heilongjiang Province) and south of China (Mianyang in Sichuan Province) were selected, and status of solid fuels using were obtained through home visits, dynamic changes in PM 2.5 concentrations in children s bedrooms were monitored by using real time online instruments, and the influencing factors of PM 2.5 pollution were analyzed by using a mixed effects model.
Results:
During the monitoring period, the daily PM 2.5 concentrations in the northern and southern pilot were 78.33 (40.50, 154.80) and 38.54(26.20, 58.46) μg/m 3, respectively, exceeding standard rates of 44.57% and 33.22%. During the heating period, the daily PM 2.5 concentrations in the northern and southern pilot were 212.50(133.60,244.10) and 104.42(73.97, 134.90) μg/m 3, respectively, with over standard rates of 96.75% and 86.96%. The mixed effects model analysis results showed that children s bedroom PM 2.5 concentrations were associated with solid fuel usage duration, window opening time, room layout (shared entrance door between kitchen and bedroom), indoor smoking, indoor humidity, and solid fuel use in the bedroom ( β =0.19, -0.05, 1.20, 0.43, 0.02, 0.35, all P <0.05).
Conclusion
Solid fuel combustion significantly comtributes to PM 2.5 pollution in children s bedrooms, with more pronounced impacts observed in northern China compared to southern regions.
9.Single-cell Protein Localization Method Based on Class Perception Graph Convolutional Network
Hao-Yang TANG ; Xin-Yue YAO ; Meng-Meng WANG ; Si-Cong YANG
Progress in Biochemistry and Biophysics 2025;52(9):2417-2427
ObjectiveThis study proposes a novel single-cell protein localization method based on a class perception graph convolutional network (CP-GCN) to overcome several critical challenges in protein microscopic image analysis, including the scarcity of cell-level annotations, inadequate feature extraction, and the difficulty in achieving precise protein localization within individual cells. The methodology involves multiple innovative components designed to enhance both feature extraction and localization accuracy. MethodsFirst, a class perception module (CPM) is developed to effectively capture and distinguish semantic features across different subcellular categories, enabling more discriminative feature representation. Building upon this, the CP-GCN network is designed to explore global features of subcellular proteins in multicellular environments. This network incorporates a category feature-aware module to extract protein semantic features aligned with label dimensions and establishes a subcellular relationship mining module to model correlations between different subcellular structures. By doing so, it generates co-occurrence embedding features that encode spatial and contextual relationships among subcellular locations, thereby improving feature representation. To further refine localization, a multi-scale feature analysis approach is employed using the K-means clustering algorithm, which classifies multi-scale features within each subcellular category and generates multi-cell class activation maps (CAMs). These CAMs highlight discriminative regions associated with specific subcellular locations, facilitating more accurate protein localization. Additionally, a pseudo-label generation strategy is introduced to address the lack of annotated single-cell data. This strategy segments multicellular images into single-cell images and assigns reliable pseudo-labels based on the CAM-predicted regions, ensuring high-quality training data for single-cell analysis. Under a transfer learning framework, the model is trained to achieve precise single-cell-level protein localization, leveraging both the extracted features and pseudo-labels for robust performance. ResultsExperimental validation on multiple single-cell test datasets demonstrates that the proposed method significantly outperforms existing approaches in terms of robustness and localization accuracy. Specifically, on the Kaggle 2021 dataset, the method achieves superior mean average precision (mAP) metrics across 18 subcellular categories, highlighting its effectiveness in diverse protein localization tasks. Visualization of the generated CAM results further confirms the model’s capability to accurately localize subcellular proteins within individual cells, even in complex multicellular environments. ConclusionThe integration of the CP-GCN network with a pseudo-labeling strategy enables the proposed method to effectively capture heterogeneous cellular features in protein images and achieve precise single-cell protein localization. This advancement not only addresses key limitations in current protein image analysis but also provides a scalable and accurate solution for subcellular protein studies, with potential applications in biomedical research and diagnostic imaging. The success of this method underscores the importance of combining advanced deep learning architectures with innovative training strategies to overcome data scarcity and improve localization performance in biological image analysis. Future work could explore the extension of this framework to other types of microscopic imaging and its application in large-scale protein interaction studies.
10.Comparative efficacy of botulinum toxin injection versus extraocular muscle surgery in acute acquired comitant esotropia
Tianyi LIU ; Yue ZHOU ; Pengzhou KUAI ; Yangchen GUO ; Xiaobo HUANG ; Yong WANG ; Xin CAO
International Eye Science 2025;25(11):1721-1727
AIM:To investigate the therapeutic effects of botulinum toxin A(BTXA)injection versus strabismus surgery in the treatment of acute acquired comitant esotropia(AACE).METHODS:Patient records of AACE cases treated at First People's Hospital of Nantong from January 2019 to September 2023 were retrospectively analyzed in this study. Patients were categorized into either strabismus surgery or BTXA injection groups based on treatment modality. Further stratification was performed according to preoperative deviation angles [>35 prism diopters(PD)vs ≤35 PD] and age(≥18 years adult group vs <18 years adolescent group). The baseline patient characteristics were collected, deviation angles at multiple timepoints before and after treatment were measured, and stereopsis test results were documented. Through comparative analysis of therapeutic outcomes across subgroups, we systematically evaluated the efficacy of different treatment approaches.RESULTS:A total of 43 AACE patients were included. At the final follow-up, both the surgery and BTXA injection groups showed a statistically significant decrease in deviation angle compared to pretreatment measurements(P<0.001). Significant differences were noted between the two groups in terms of the cure rate of strabismus and the recovery rate of stereopsis(P<0.05). For patients with deviations >35 PD, surgery yielded significantly better outcomes than injection therapy in postoperative angle, success rate, and stereopsis recovery(P<0.05). Similarly, in patients aged ≥18 years, surgical treatment was superior to injections in reducing strabismus angle, improving success rates, and restoring stereopsis(P<0.05).CONCLUSION:Both BTXA injection and strabismus surgery demonstrate therapeutic efficacy in AACE. Surgical treatment demonstrated superior efficacy compared to BTXA injection therapy, particularly in patients with deviations >35 PD and those aged ≥18 years. For patients with angles ≤35 PD or under 18 years, BTXA injection remains a viable treatment option.


Result Analysis
Print
Save
E-mail