1.Temporomandibular joint capsule suspension for neocondyle stability in free fibular flap reconstruction of the mandibular condyle
Shuang BAI ; Yao YU ; Wen-Bo ZHANG ; Ya-Qing MAO ; Yang WANG ; Chi MAO ; Dian-Can WANG ; Xin PENG
Journal of the Korean Association of Oral and Maxillofacial Surgeons 2025;51(1):46-53
Objectives:
This study evaluates the efficacy of a new temporomandibular joint (TMJ) capsule suspension technique for stabilizing the TMJ after free fibular flap reconstruction of the mandibular condyle.
Patients and Methods:
Patients undergoing the TMJ capsule suspension technique during free fibular flap reconstruction after mandibulectomy with condylectomy (study group; n=9) were compared with a control group (n=9). Mandibular movement trajectory and surface electromyographic signals of bilateral masseters were recorded. The neocondyle–disc relationship was examined with magnetic resonance imaging (MRI) at 6 months after surgery.
Results:
Maximal mouth opening and bilateral marginal movement distances were comparable between the two groups (P>0.05). The asymmetry index of the condyle path length was significantly higher in controls (P=0.02). Bilateral mouth opening trajectories were symmetric in 7 patients and deviated to the affected side in 2 patients in the study group; they deviated to the affected side in all controls. The mean electromyographic values of the masseter on the affected side in resting, maximum bite, and chewing states were comparable between the two groups (P=0.13, P=0.65, and P=0.82, respectively). On MRI at 6 months, the thicknesses of the anterior, medial, and posterior bands and TMJ disc length were similar on the affected and normal sides in the study group (P=0.57, P=0.13, P=0.48, and P=0.87, respectively).
Conclusion
The proposed TMJ capsule suspension technique could improve postoperative TMJ structure and function after fibular free flap reconstruction following mandibulectomy with condylectomy.
2.Toxic Components, Toxicity Mechanisms, Toxicity Attenuation Measures, and Evaluation Methods of Renal Injury-inducing Chinese Medicine
Xin HUANG ; Lujin ZHANG ; Mingsan MIAO ; Can WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):295-304
ObjectiveWe reviewed the existing experimental studies about renal injury-inducing Chinese medicine and systematically analyzed the toxicity mechanisms, toxic components, toxicity attenuation measures, and modern evaluation methods of renal injury-inducing Chinese medicine. The results are expected to provide new ideas for the modern research on kidney injury-inducing Chinese medicine, offer new breakthrough points for the toxicity attenuation of Chinese medicine by compatibility and processing, and give insights into the future research of Chinese medicine toxicology on the basis of ensuring the safety and scientific application of Chinese medicine. MethodsThe animal, cell, and clinical studies of kidney injury-inducing Chinese medicine were retrieved from CNKI, Wanfang Data, VIP, PubMed, and Web of Science. The names and toxic components of renal injury-inducing Chinese medicine, renal injury sites, toxicity mechanisms, toxicity attenuation measures, and related evaluation methods were summarized. ResultsThe toxicity mechanisms of kidney injury-inducing Chinese medicine mainly involved oxidative stress, endoplasmic reticulum stress, inflammatory cell infiltration, and organic anion transporters. Processing and compatibility were the main toxicity attenuation measures. The evaluation methods encompassed animal experiments, cell models, network pharmacology, metabolomics, toxicology genomics, and fluorescent probe technology. ConclusionAt present, the toxicological verification of kidney injury-inducing Chinese medicine starts from toxic components and combines various experimental methods, which is more comprehensive and systematic than the previous studies based on only animal experiments. According to the classical theories of traditional Chinese medicine, the toxicity of kidney injury-inducing Chinese medicine is mainly attenuated by decocting in water, steaming, and frying. With the progress of science and technology, new processing methods for toxicity attenuation are emerging, and structural transformation, fermentation, and microwave methods are the key research directions of toxicity attenuation of Chinese medicine in recent years.
3.Toxic Components, Toxicity Mechanisms, Toxicity Attenuation Measures, and Evaluation Methods of Renal Injury-inducing Chinese Medicine
Xin HUANG ; Lujin ZHANG ; Mingsan MIAO ; Can WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):295-304
ObjectiveWe reviewed the existing experimental studies about renal injury-inducing Chinese medicine and systematically analyzed the toxicity mechanisms, toxic components, toxicity attenuation measures, and modern evaluation methods of renal injury-inducing Chinese medicine. The results are expected to provide new ideas for the modern research on kidney injury-inducing Chinese medicine, offer new breakthrough points for the toxicity attenuation of Chinese medicine by compatibility and processing, and give insights into the future research of Chinese medicine toxicology on the basis of ensuring the safety and scientific application of Chinese medicine. MethodsThe animal, cell, and clinical studies of kidney injury-inducing Chinese medicine were retrieved from CNKI, Wanfang Data, VIP, PubMed, and Web of Science. The names and toxic components of renal injury-inducing Chinese medicine, renal injury sites, toxicity mechanisms, toxicity attenuation measures, and related evaluation methods were summarized. ResultsThe toxicity mechanisms of kidney injury-inducing Chinese medicine mainly involved oxidative stress, endoplasmic reticulum stress, inflammatory cell infiltration, and organic anion transporters. Processing and compatibility were the main toxicity attenuation measures. The evaluation methods encompassed animal experiments, cell models, network pharmacology, metabolomics, toxicology genomics, and fluorescent probe technology. ConclusionAt present, the toxicological verification of kidney injury-inducing Chinese medicine starts from toxic components and combines various experimental methods, which is more comprehensive and systematic than the previous studies based on only animal experiments. According to the classical theories of traditional Chinese medicine, the toxicity of kidney injury-inducing Chinese medicine is mainly attenuated by decocting in water, steaming, and frying. With the progress of science and technology, new processing methods for toxicity attenuation are emerging, and structural transformation, fermentation, and microwave methods are the key research directions of toxicity attenuation of Chinese medicine in recent years.
4.Temporomandibular joint capsule suspension for neocondyle stability in free fibular flap reconstruction of the mandibular condyle
Shuang BAI ; Yao YU ; Wen-Bo ZHANG ; Ya-Qing MAO ; Yang WANG ; Chi MAO ; Dian-Can WANG ; Xin PENG
Journal of the Korean Association of Oral and Maxillofacial Surgeons 2025;51(1):46-53
Objectives:
This study evaluates the efficacy of a new temporomandibular joint (TMJ) capsule suspension technique for stabilizing the TMJ after free fibular flap reconstruction of the mandibular condyle.
Patients and Methods:
Patients undergoing the TMJ capsule suspension technique during free fibular flap reconstruction after mandibulectomy with condylectomy (study group; n=9) were compared with a control group (n=9). Mandibular movement trajectory and surface electromyographic signals of bilateral masseters were recorded. The neocondyle–disc relationship was examined with magnetic resonance imaging (MRI) at 6 months after surgery.
Results:
Maximal mouth opening and bilateral marginal movement distances were comparable between the two groups (P>0.05). The asymmetry index of the condyle path length was significantly higher in controls (P=0.02). Bilateral mouth opening trajectories were symmetric in 7 patients and deviated to the affected side in 2 patients in the study group; they deviated to the affected side in all controls. The mean electromyographic values of the masseter on the affected side in resting, maximum bite, and chewing states were comparable between the two groups (P=0.13, P=0.65, and P=0.82, respectively). On MRI at 6 months, the thicknesses of the anterior, medial, and posterior bands and TMJ disc length were similar on the affected and normal sides in the study group (P=0.57, P=0.13, P=0.48, and P=0.87, respectively).
Conclusion
The proposed TMJ capsule suspension technique could improve postoperative TMJ structure and function after fibular free flap reconstruction following mandibulectomy with condylectomy.
5.Temporomandibular joint capsule suspension for neocondyle stability in free fibular flap reconstruction of the mandibular condyle
Shuang BAI ; Yao YU ; Wen-Bo ZHANG ; Ya-Qing MAO ; Yang WANG ; Chi MAO ; Dian-Can WANG ; Xin PENG
Journal of the Korean Association of Oral and Maxillofacial Surgeons 2025;51(1):46-53
Objectives:
This study evaluates the efficacy of a new temporomandibular joint (TMJ) capsule suspension technique for stabilizing the TMJ after free fibular flap reconstruction of the mandibular condyle.
Patients and Methods:
Patients undergoing the TMJ capsule suspension technique during free fibular flap reconstruction after mandibulectomy with condylectomy (study group; n=9) were compared with a control group (n=9). Mandibular movement trajectory and surface electromyographic signals of bilateral masseters were recorded. The neocondyle–disc relationship was examined with magnetic resonance imaging (MRI) at 6 months after surgery.
Results:
Maximal mouth opening and bilateral marginal movement distances were comparable between the two groups (P>0.05). The asymmetry index of the condyle path length was significantly higher in controls (P=0.02). Bilateral mouth opening trajectories were symmetric in 7 patients and deviated to the affected side in 2 patients in the study group; they deviated to the affected side in all controls. The mean electromyographic values of the masseter on the affected side in resting, maximum bite, and chewing states were comparable between the two groups (P=0.13, P=0.65, and P=0.82, respectively). On MRI at 6 months, the thicknesses of the anterior, medial, and posterior bands and TMJ disc length were similar on the affected and normal sides in the study group (P=0.57, P=0.13, P=0.48, and P=0.87, respectively).
Conclusion
The proposed TMJ capsule suspension technique could improve postoperative TMJ structure and function after fibular free flap reconstruction following mandibulectomy with condylectomy.
6.Interplay Between Interferon Stimulatory Pathways and Organellar Dynamics
Jin-Ru LI ; Yu DUAN ; Xin-Gui DAI ; Yong-Ming YAO
Progress in Biochemistry and Biophysics 2025;52(7):1708-1727
Interferon stimulating factor STING, a transmembrane protein residing in the endoplasmic reticulum, is extensively involved in the sensing and transduction of intracellular signals and serves as a crucial component of the innate immune system. STING is capable of directly or indirectly responding to abnormal DNA originating from diverse sources within the cytoplasm, thereby fulfilling its classical antiviral and antitumor functions. Structurally, STING is composed of 4 transmembrane helices, a cytoplasmic ligand binding domain (LBD), and a C terminal tail structure (CTT). The transmembrane domain (TM), which is formed by the transmembrane helical structures, anchors STING to the endoplasmic reticulum, while the LBD is in charge of binding to cyclic dinucleotides (CDNs). The classical second messenger, cyclic guanosine monophosphate-adenosine monophosphate (cGAMP), represents a key upstream molecule for STING activation. Once cGAMP binds to LBD, STING experiences conformational alterations, which subsequently lead to the recruitment of Tank-binding kinase 1 (TBK1) via the CTT domain. This, in turn, mediates interferon secretion and promotes the activation and migration of dendritic cells, T cells, and natural killer cells. Additionally, STING is able to activate nuclear factor-κB (NF-κB), thereby initiating the synthesis and release of inflammatory factors and augmenting the body’s immune response. In recent years, an increasing number of studies have disclosed the non-classical functions of STING. It has been found that STING plays a significant role in organelle regulation. STING is not only implicated in the quality control systems of organelles such as mitochondria and endoplasmic reticulum but also modulates the functions of these organelles. For instance, STING can influence key aspects of organelle quality control, including mitochondrial fission and fusion, mitophagy, and endoplasmic reticulum stress. This regulatory effect is not unidirectional; rather, it is subject to organelle feedback regulation, thereby forming a complex interaction network. STING also exerts a monitoring function on the nucleus and ribosomes, which further enhances the role of the cGAS-STING pathway in infection-related immunity. The interaction mechanism between STING and organelles is highly intricate, which, within a certain range, enhances the cells’ capacity to respond to external stimuli and survival pressure. However, once the balance of this interaction is disrupted, it may result in the occurrence and development of inflammatory diseases, such as aseptic inflammation and autoimmune diseases. Excessive activation or malfunction of STING may trigger an over-exuberant inflammatory response, which subsequently leads to tissue damage and pathological states. This review recapitulates the recent interactions between STING and diverse organelles, encompassing its multifarious functions in antiviral, antitumor, organelle regulation, and immune regulation. These investigations not only deepen the comprehension of molecular mechanisms underlying STING but also offer novel concepts for the exploration of human disease pathogenesis and the development of potential treatment strategies. In the future, with further probing into STING function and its regulatory mechanisms, it is anticipated to pioneer new approaches for the treatment of complex diseases such as inflammatory diseases and tumors.
7.Analysis of T7 RNA Polymerase: From Structure-function Relationship to dsRNA Challenge and Biotechnological Applications
Wei-Chen NING ; Yu HUA ; Hui-Ling YOU ; Qiu-Shi LI ; Yao WU ; Yun-Long LIU ; Zhen-Xin HU
Progress in Biochemistry and Biophysics 2025;52(9):2280-2294
T7 RNA polymerase (T7 RNAP) is one of the simplest known RNA polymerases. Its unique structural features make it a critical model for studying the mechanisms of RNA synthesis. This review systematically examines the static crystal structure of T7 RNAP, beginning with an in-depth examination of its characteristic “thumb”, “palm”, and “finger” domains, which form the classic “right-hand-like” architecture. By detailing these structural elements, this review establishes a foundation for understanding the overall organization of T7 RNAP. This review systematically maps the functional roles of secondary structural elements and their subdomains in transcriptional catalysis, progressively elucidating the fundamental relationships between structure and function. Further, the intrinsic flexibility of T7 RNAP and its applications in research are also discussed. Additionally, the review presents the structural diagrams of the enzyme at different stages of the transcription process, and through these diagrams, it provides a detailed description of the complete transcription process of T7 RNAP. By integrating structural dynamics and kinetics analyses, the review constructs a comprehensive framework that bridges static structure to dynamic processes. Despite its advantages, T7 RNAP has a notable limitation: it generates double-stranded RNA (dsRNA) as a byproduct. The presence of dsRNA not only compromises the purity of mRNA products but also elicits nonspecific immune responses, which pose significant challenges for biotechnological and therapeutic applications. The review provides a detailed exploration of the mechanisms underlying dsRNA formation during T7 RNAP catalysis, reviews current strategies to mitigate this issue, and highlights recent progress in the field. A key focus is the semi-rational design of T7 RNAP mutants engineered to minimize dsRNA generation and enhance catalytic performance. Beyond its role in transcription, T7 RNAP exhibits rapid development and extensive application in fields, including gene editing, biosensing, and mRNA vaccines. This review systematically examines the structure-function relationships of T7 RNAP, elucidates the mechanisms of dsRNA formation, and discusses engineering strategies to optimize its performance. It further explores the engineering optimization and functional expansion of T7 RNAP. Furthermore, this review also addresses the pressing issues that currently need resolution, discusses the major challenges in the practical application of T7 RNAP, and provides an outlook on potential future research directions. In summary, this review provides a comprehensive analysis of T7 RNAP, ranging from its structural architecture to cutting-edge applications. We systematically examine: (1) the characteristic right-hand domains (thumb, palm, fingers) that define its minimalistic structure; (2) the structure-function relationships underlying transcriptional catalysis; and (3) the dynamic transitions during the complete transcription cycle. While highlighting T7 RNAP’s versatility in gene editing, biosensing, and mRNA vaccine production, we critically address its major limitation—dsRNA byproduct formation—and evaluate engineering solutions including semi-rationally designed mutants. By synthesizing current knowledge and identifying key challenges, this work aims to provide novel insights for the development and application of T7 RNAP and to foster further thought and progress in related fields.
8. Mechanism and experimental validation of Zukamu granules in treatment of bronchial asthma based on network pharmacology and molecular docking
Yan-Min HOU ; Li-Juan ZHANG ; Yu-Yao LI ; Wen-Xin ZHOU ; Hang-Yu WANG ; Jin-Hui WANG ; Ke ZHANG ; Mei XU ; Dong LIU ; Jin-Hui WANG
Chinese Pharmacological Bulletin 2024;40(2):363-371
Aim To anticipate the mechanism of zuka- mu granules (ZKMG) in the treatment of bronchial asthma, and to confirm the projected outcomes through in vivo tests via using network pharmacology and molecular docking technology. Methods The database was examined for ZKMG targets, active substances, and prospective targets for bronchial asthma. The protein protein interaction network diagram (PPI) and the medication component target network were created using ZKMG and the intersection targets of bronchial asthma. The Kyoto Encyclopedia of Genes and Genomics (KEGG) and gene ontology (GO) were used for enrichment analysis, and network pharmacology findings were used for molecular docking, ovalbumin (OVA) intraperitoneal injection was used to create a bronchial asthma model, and in vivo tests were used to confirm how ZKMG affected bronchial asthma. Results There were 176 key targets for ZKMG's treatment of bronchial asthma, most of which involved biological processes like signal transduction, negative regulation of apoptotic processes, and angiogenesis. ZKMG contained 194 potentially active components, including quercetin, kaempferol, luteolin, and other important components. Via signaling pathways such TNF, vascular endothelial growth factor A (VEGFA), cancer pathway, and MAPK, they had therapeutic effects on bronchial asthma. Conclusion Key components had strong binding activity with appropriate targets, according to molecular docking data. In vivo tests showed that ZKMG could reduce p-p38, p-ERKl/2, and p-I
9.Effect and Mechanism of Menispermi Rhizoma Total Alkaloids on Antiviral Infection
Xuejiao WANG ; Qiqi LI ; Yanli YU ; Xia LIU ; Min LI ; Zhe LIU ; Xin JIA ; Yao WANG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(10):37-44
ObjectiveTo investigate the antiviral effect of Menispermi Rhizoma total alkaloids and its relationship with the type Ⅰ interferon (IFN-Ⅰ) signaling pathway. MethodThe effects of Menispermi Rhizoma total alkaloids on the intracellular replication of influenza A virus (H1N1), vesicular stomatitis virus (VSV), and cerebral myocarditis virus (EMCV) were detected by fluorescent inverted microscope, flow cytometry, Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR), and Western blot. A mouse model infected with H1N1 was constructed, and the mice were divided into a control group, H1N1 model group, Menispermi Rhizoma total alkaloids groups (10, 20, 30 mg·kg-1), and oseltamivir group (40 mg·kg-1), so as to study the effects on the weight and survival rate of infected mice. Real-time PCR was used to detect the activation effect of Menispermi Rhizoma total alkaloids on the IFN-Ⅰ pathway in cells, and the relationship between the antiviral effect of Menispermi Rhizoma total alkaloids in IFNAR1 knockout A549 cells (IFNAR1-/--A549) and IFN-Ⅰ pathway was detected. ResultCompared with the control group, the virus proliferated significantly in the model group (P<0.01). Compared with the model group, Menispermi Rhizoma total alkaloids could significantly inhibit the replication of H1N1, VSV, and EMCV in vitro (P<0.01), inhibit the weight loss of the mice infected with the H1N1 in vivo, and improve the survival rate of mice (P<0.05). In addition, Menispermi Rhizoma total alkaloids activated the IFN-I pathway and relied on this pathway to exert the function of antiviral infection. ConclusionMenispermi Rhizoma total alkaloids exert antiviral effects in vivo and in vitro by activating the IFN-Ⅰ pathway.
10.Clinical analysis of denture rehabilitation after mandibular fibula free-flap recon-struction
Congwei WANG ; Min GAO ; Yao YU ; Wenbo ZHANG ; Xin PENG
Journal of Peking University(Health Sciences) 2024;56(1):66-73
Objective:To evaluate the postoperative denture restoration and denture function in pa-tients with mandibular defect reconstructed with vascularized free fibula flap.Methods:In the study,154 patients who underwent mandibular segment resection and used vascularized free fibula flap to repair mandibular defects due to inflammation,trauma and tumor from January 2015 to December 2020 were collected.These patients had common inclusion criteria which were stable occlusal relationship before operation,segmental defects of mandibular bone caused by lesions of mandible and adjacent parts(such as floor of mouth,tongue,cheek),free fibula flap used for repair and surviving after operation.Relevant data were reviewed and situation of denture restoration was followed up.A questionnaire related to den-ture functional evaluation had been proposed for those who had completed the denture rehabilitation.The evaluation index of denture restoration function was assigned by expert authority to obtain the denture function score.SPSS 18.0 software was used for statistical analysis of the basic information of the patients included in the study and the denture restoration of the patients.Results:The rate of postoperative den-ture restoration in the patients with mandibular defects repaired by free fibula flap was 17.5%,and the rate of postoperative denture restoration in the patients with benign mandibular tumors was 25.0%(18/72),which was significantly greater than that in the patients with malignant tumors 11.0%(9/82,P<0.05).There was no significant difference in denture function score between the patients with condylar defect and those without condylar defect in denture repair rate and denture function score(P>0.05).The functional score of implant denture was significantly greater than that of removable denture(P<0.05).According to Brown classification,the denture function score of the patients with the defect invo-lving the anterior mandibular region was significantly greater than that of the patients without the anterior mandibular region involved(P<0.05).The poor oral conditions,such as less amount of remaining teeth,insufficient retention strength,large mobility of soft tissue in the surgical area,poor oral vestibular groove condition became the main reason of not receiving denture restoration(37.86%).Conclusion:The denture rehabilitation of mandibular defect reconstructed with vascularized free fibula flap is closely rela-ted to pathological properties and oral conditions.The clinical outcome of implant denture has been con-firmed effectively and it is a better choice for future denture restoration after mandibular reconstruction.

Result Analysis
Print
Save
E-mail