1.Expert consensus on odontogenic maxillary sinusitis multi-disciplinary treatment
Lin JIANG ; Wang CHENGSHUO ; Wang XIANGDONG ; Chen FAMING ; Zhang WEI ; Sun HONGCHEN ; Yan FUHUA ; Pan YAPING ; Zhu DONGDONG ; Yang QINTAI ; Ge SHAOHUA ; Sun YAO ; Wang KUIJI ; Zhang YUAN ; Xian MU ; Zheng MING ; Mo ANCHUN ; Xu XIN ; Wang HANGUO ; Zhou XUEDONG ; Zhang LUO
International Journal of Oral Science 2024;16(1):1-14
Odontogenic maxillary sinusitis(OMS)is a subtype of maxillary sinusitis(MS).It is actually inflammation of the maxillary sinus that secondary to adjacent infectious maxillary dental lesion.Due to the lack of unique clinical features,OMS is difficult to distinguish from other types of rhinosinusitis.Besides,the characteristic infectious pathogeny of OMS makes it is resistant to conventional therapies of rhinosinusitis.Its current diagnosis and treatment are thus facing great difficulties.The multi-disciplinary cooperation between otolaryngologists and dentists is absolutely urgent to settle these questions and to acquire standardized diagnostic and treatment regimen for OMS.However,this disease has actually received little attention and has been underrepresented by relatively low publication volume and quality.Based on systematically reviewed literature and practical experiences of expert members,our consensus focuses on characteristics,symptoms,classification and diagnosis of OMS,and further put forward multi-disciplinary treatment decisions for OMS,as well as the common treatment complications and relative managements.This consensus aims to increase attention to OMS,and optimize the clinical diagnosis and decision-making of OMS,which finally provides evidence-based options for OMS clinical management.
2.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
3. Expression, purification and functional verification of recombinant human α-galactosidase A in suspension CHO-S
Mu-Lan DENG ; Hong-Yu ZHOU ; Ke-Xin ZHENG ; Zhao-Yang LI ; Wan-Yi GUO ; Yan-Ping WANG ; Zhi-Cheng LIANG ; Fang-Hong LI ; Yun-Ping MU ; Zi-Jian ZHAO
Chinese Pharmacological Bulletin 2023;39(4):774-781
Aim To express and purify rhα-Gal A with a 6 X His tag via using a serum-free expression system in high-density suspension culture of Chinese hamster ovary cells ( CHO-S) , and to verify the scavenging effect of rhα-Gal A on globular trisaccharide ceramide (Gb3 or GL3) . Methods The construction of recombinant protein expression vector, pcDNA4-GLA, was achieved by fusing the human α-galactosidase cDNA, gla, with 6 X His tag and artificial DNA synthesis. The expression plasmid was transfected into the suspended CHO-S to express rhα-Gal A and then purified. Following this procedure, we determined rhα-Gal A's expression, the enzymatic activity, and the glycosylation of the recombinant enzyme. Co-incubation with cultured cells was performed to examine whether rhα-Gal A could be taken up into the cells and effectively remove Gb3 substrates. Results rhα-Gal A was successfully expressed and purified after transiently transfecting pcDNA4-GLA into the suspended CHO-S, and the yield was up to (100 ±20. 6) mg • L
4.Predictive value of preoperative liver function for perioperative massive blood transfusion in patients undergoing ascending aorta surgery
Lihui QIAN ; Caimin ZHU ; Zhangsheng ZHAO ; Lei WANG ; Wei ZHOU ; Qile XIN ; Youli MA ; Qitian MU
Chinese Journal of Blood Transfusion 2023;36(12):1118-1123
【Objective】 To explore the predictive value of preoperative liver function for massive blood transfusion (MBT) in patients undergoing ascending aorta surgery. 【Methods】 Data from 238 patients undergoing ascending aorta surgery in the Department of Cardiovascular Surgery at The Affiliated Lihuili Hospital of Ningbo University were collected. Preoperative liver function tests were performed for all patients. Based on the perioperative transfusion volumes of red blood cell suspension, patients were divided into the MBT group, non-MBT group, and no blood transfusion (NBT) group. Clinical data during the perioperative period were compared among different groups. Receiver operating characteristic curve (ROC curve) analysis was used to assess the predictive value of liver function indicators for MBT and determine cut-off values. 【Results】 Compared with the non-MBT group and NBT group, the MBT group showed statistically significant differences in preoperative levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), direct bilirubin (DBIL), and serum albumin (SA) (P<0.05). ROC curve analysis revealed that AST had the largest area under the curve (AUC) for predicting MBT, with a value of 0.723. ALT had the highest specificity for predicting MBT at 86.7%, and SA had the highest sensitivity at 89.7%. When AST >28.50 U/L, ALT >40.00 U/L, SA ≤34.55 g/L, and DBIL >4.25 μmol/L, there was a significant increase in the transfusion volume of various blood components and the incidence of MBT. 【Conclusion】 Preoperative liver function indicators (AST, ALT, SA, DBIL) have a moderate predictive value for MBT in patients undergoing ascending aorta surgery.
5.Current status of unplanned readmission of neonates within 31 days after discharge from the neonatal intensive care unit and risk factors for readmission.
Qiao-Mu ZHENG ; Wen-Zhe HUA ; Jing-Xin ZHOU ; Li-Ping JIANG
Chinese Journal of Contemporary Pediatrics 2022;24(3):314-318
OBJECTIVES:
To investigate the current status of unplanned readmission of neonates within 31 days after discharge from the neonatal intensive care unit (NICU) and risk factors for readmission.
METHODS:
A retrospective analysis was performed on the medical data of 1 561 infants discharged from the NICU, among whom 52 infants who were readmitted within 31 days were enrolled as the case group, and 104 infants who were not readmitted after discharge during the same period of time were enrolled as the control group. Univariate analysis and multivariate logistic regression analysis were performed to identify the risk factors for readmission.
RESULTS:
Among the 1 561 infants, a total of 63 readmissions occurred in 52 infants, with a readmission rate of 3.33%. hyperbilirubinemia and pneumonia were the main causes for readmission, accounting for 29% (18/63) and 24% (15/63) respectively. The multivariate logistic regression analysis showed that that gestational age <28 weeks, birth weight <1 500 g, multiple pregnancy, mechanical ventilation, and length of hospital stay <7 days were risk factors for readmission (OR=5.645, 5.750, 3.044, 3.331, and 1.718 respectively, P<0.05).
CONCLUSIONS
Neonates have a relatively high risk of readmission after discharge from the NICU. The medical staff should pay attention to risk factors for readmission and formulate targeted intervention measures, so as to reduce readmission and improve the quality of medical service.
Female
;
Humans
;
Infant
;
Infant, Newborn
;
Intensive Care Units, Neonatal
;
Patient Discharge
;
Patient Readmission
;
Pregnancy
;
Retrospective Studies
;
Risk Factors
6.Proportion and rate: connotation and understanding route.
Ya Xin LI ; Yu Tong MU ; Zhuo Ying HUANG ; Xiao Yu ZHOU ; Yang GUO ; Xiao Dong SUN ; Ying Jie ZHENG
Chinese Journal of Epidemiology 2022;43(1):105-111
Proportion and rate have multiple and overlapping meanings, which blur their concepts. Based on the existence of the states and the occurrence of the events and their measuring process, we first put forward the concept of "cumulative number of states in point time". Considering the general meaning of "rate" in mathematics and the units of the elements in indexes, this paper puts forward the concept of "the change of cumulative number of states in point time", which is equal to the commonly acknowledged concept "number of incident event within observation period" or "absolute rate", and further constructs relative rate and proportion. Proportions can be classified into three types: time-point (or rate-type) constitutional proportion, time-period incidence proportion and their synthesis, time-period constitutional proportion. The essential difference between relative rate and time-period proportions is whether the observation period is regarded as a one-unit-length fixed period which would be further moved to the description of the indexes. Furthermore, the sources populations of relative rate and proportions are exclusively those at the beginning of the observation period. Thus, we established a unified identification route about ratios, proportions, and rates, the basic indicators of categorical data in populations. These are applicable to both fixed and dynamic populations. The paper aims to clarify the connotation of the indexes and the feasible understanding route and provide some reference for the population researchers.
Humans
;
Incidence
7.Immunoprotective effect of recombinant peptidyl-prolyl cis-trans isomerase from Babesia microti against B. microti infection in mice
Yu-chun CAI ; Peng SONG ; Mu-xin CHEN ; Jia-hui SUN ; Yan ZHOU ; Lin LIN ; Jia-xu CHEN
Chinese Journal of Schistosomiasis Control 2022;34(6):604-610
Objective To evaluate the immunoprotective effect of active immunization with recombinant peptidyl-prolyl cis-trans isomerase from Babesia microti against B. microti infection in mice. Methods Female BALB/c mice at 6 weeks of age, each weighing approximately 20 g, were divided into the recombinant protein immunization group, the infection control group and the normal control group, of 25, 18, 15 mice in each group, respectively. Mice in the recombinant protein immunization group were given active immunization with recombinant BmPPIase protein, and 18 mice with the highest antibody titers were intraperitoneally injected with 100 μL of B. microti-infected whole blood 2 weeks after the last immunization. Mice in the infection control group were intraperitoneally injected with 100 μL of B. microti-infected whole blood, while 15 mice in the normal control group received no treatment. Blood samples were collected from mice in the recombinant protein immunization group and the infection control group on days 0 to 30 post-immunization for detection of B. microti infection, and blood samples were collected on days 0, 7, 14, 21, and 28 post-immunization for routine blood tests with a blood cell analyzer and for detection of serum cytokines using cytometric bead array. Results Anti-BmPPIase antibodies were detected in 25 mice in the recombinant protein immunization group 2 weeks after the last immunization, with titers of 5 × 103 to 8 × 104. B. microti infection rate peaked in mice in both the recombinant protein immunization and the infection control group on day 7 post-immunization, with positive infection rates of 13.3% and 50.0%, and there were significant differences between the two groups in terms of B. microti infection rate on days 3 (χ2= 113.18, P < 0.01), 5 (χ2 = 475.22, P < 0.01), 7 (χ2 = 465.98, P < 0.01) and 9 post-infection (χ2= 18.71, P < 0.01), while the B. microti infection rate tended to be 0 in both groups on day 11 post-immunization. Routine blood tests showed higher red blood cell counts [(5.30 ± 0.50) × 1012 to (9.87 ± 0.24) × 1012 counts/L)] and hemoglobin levels [(89.67 ± 22.80) to (148.60 ± 3.05) g/L)] in the recombinant protein immunization group than in the infection control group on days 0 to 28 post-immunization. Cytometric bead array detected higher serum interferon-γ [(748.59 ± 17.56) to (3 858.28 ± 1 049.10) fg/mL], tumor necrosis factor-α [(6 687.34 ± 1 016.64) to (12 708.13 ± 1 629.79) fg/mL], interleukin (IL)-6 [(611.05 ± 75.60) to (6 852.68 ± 1 554.00) fg/mL] and IL-17a [(167.68 ± 185.00) to (10 849.27 ± 355.40) fg/mL] and lower IL-10 levels [(247.65 ± 138.00) to (18 787.20 ± 2 830.22) fg/mL] in the recombinant protein immunization group than in the infection control group during the study period. Conclusions Recombinant BmPPIase protein induces up-regulation of interferon-γ, tumor necrosis factor-α and presents a high immunoprotective activity against B. microti infection in mice, which is a potential vaccine candidate protein.
8.Genetic Characteristics and Antimicrobial Susceptibility of
Yuan Yuan WANG ; Gui Lan ZHOU ; Ying LI ; Yi Xin GU ; Mu HE ; Shuang ZHANG ; Guo Qiang JI ; Jie YANG ; Miao WANG ; Hong Mei MA ; Mao Jun ZHANG
Biomedical and Environmental Sciences 2021;34(12):1024-1028
Aged
;
Animals
;
Arcobacter/genetics*
;
Chickens
;
Diarrhea/microbiology*
;
Drug Resistance, Bacterial/genetics*
;
Genes, Bacterial
;
Gram-Negative Bacterial Infections/veterinary*
;
Humans
;
Male
;
Meat
;
Microbial Sensitivity Tests
;
Phylogeny
;
Poultry Diseases/microbiology*
;
Virulence
;
Virulence Factors/genetics*
9.Ginsenoside rg3 reduces body weight by regulating fat content and browning in obese mice
Mu QIANQIAN ; Zuo JIACHENG ; Zhao DANDAN ; Zhou XIAOSHAN ; Hua JING ; Bai YING ; Mo FANGFANG ; Fang XIN ; Fu MIN ; Gao SIHUA
Journal of Traditional Chinese Medical Sciences 2021;8(1):65-71
Objective: To determine the effects of ginsenoside rg3 on the body weight of C57BL/6J obese mice and to investigate its underlying weight loss mechanisms with a focus on white fat browning-related factors. Methods: Eight-week-old C57BL/6J male mice were fed a high-fat diet for 12 successive weeks to construct the obese model. C57BL/6J male mice were fed a standard chow diet to construct normal control group. After 8 weeks of intervention with ginsenoside rg3, the food intake, body weight, body fat mass, blood sugar, and lipid profiles of the mice in each group were detected. Hematoxylin and eosin (HE) staining was used to observe the histological morphology of the adipose tissues. Real-time poly-merase chain reaction (RT-PCR) and Western blotting (WB) were applied to detect the gene and protein expression levels of peroxisome proliferators-activated receptor gama (PPARγ), Peroxisome proliferator-activated receptor-gamma coactivator -1alpha (PGC-1α), PR domain containing 16 (PRDM16), and uncoupling protein 1 (UCP-1).Results: Compared to normal control group mice, the body weight, food intake, body fat composition, and blood lipid levels of model group mice increased significantly. After 8 weeks of intervention with ginsenoside rg3, body weight, body fat composition, food intake, and blood lipid profiles decreased. HE staining showed that ginsenoside rg3 can improve white adipocyte hypertrophy to a certain extent. RT-PCR and WB demonstrated that ginsenoside rg3 can increase the mRNA and protein expression levels of PPARγ, PGC-1α, PRDM16, and UCP-1 in the adipose tissues of obese mice. Conclusion: The weight reduction effect of ginsenoside rg3 may be related to the promotion of white fat browning.
10.Establishment of a recombinase-aided isothermal amplification assay for nucleic acid detection of Echinococcus multilocularis and its preliminary application
Hong-Rang ZHOU ; Mu-Xin CHEN ; Qing YU ; Lin AI ; Ying WANG ; Qiu-Li XU ; Ning XIAO
Chinese Journal of Schistosomiasis Control 2020;32(2):168-173
Objective To establish a rapid nucleic acid detection technique for identification of Echinococcus multilocularis based on the recombinase aided isothermal amplification assay (RAA) and assess its diagnostic efficiency. Methods The mitochondrial gene sequence of E. multilocularis (GenBank accession number: AB018440) was used as a target sequence. The primers were designed according to the RAA reaction principle and synthesized, and RAA was performed using the generated primers. E. multilocularis genomic DNA at various concentrations and the pMD19-T (Simple) vector containing various copies of the target gene fragment were amplified using RAA to evaluate its sensitivity for detection of E. multilocularis, and RAA was em- ployed to detect the genomic DNA of E. granulosus G1 genotype, Taenia saginata, T. asiatica, T. multiceps, Dipylidium caninum, Toxocara canis, Trichuris trichiura, Giardia lamblia, Fasciola hepatica, Paragonimus westermani, Fasciola gigantica and Clonorchis sinensis to evaluate its specificity. In addition, the optimized RAA was employed to detect nine tissue specimens of E. granulosus-infected animals, 3 fecal samples from E. granulosus-infected dogs and 2 fecal samples from field infected dogs to examine its reliability and feasibility. Results The established RAA was able to detect the specific target gene fragment of E. multilocularis within 40 min. The lowest detect limit of RAA was 10 pg if E. multilocularis genomic DNA served as a template. If the re- combinant plasmid was used as a template, the minimally detectable copy number of RAA was 104. In addition, RAA was nega- tive for the genomic DNA of E. granulosus G1 genotype, T. saginata, T. asiatica, T. multiceps, D. caninum, T. canis, T. trichiura, G. lamblia, F. hepatica, P. westermani, F. gigantica and C. sinensis. The established RAA was positive for detection of the tissue specimens of infected animals, and simulated and field dog stool samples. Conclusion A rapid, sensitive and specific RAA is established, which shows promising values in identification of E. multilocularis and gene diagnosis of alveolar echinococcosis.

Result Analysis
Print
Save
E-mail