1.Gandouling Regulates PI3K/Akt/mTOR Autophagy Signaling Pathway via LncRNA H19 for Treatment of Wilson Disease Liver Fibrosis
Xin YIN ; Han WANG ; Daiping HUA ; Lanting SUN ; Yunyun XU ; Wenming YANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):131-138
		                        		
		                        			
		                        			ObjectiveTo investigate the potential mechanisms and pathways through which Gandouling (GDL) exerts its effects in the treatment of liver fibrosis in Wilson disease. MethodsSixty male SD rats were randomly divided into six groups: the normal group, the model group, the GDL low-, medium-, and high-dose groups (0.24, 0.48, 0.96 g·kg-1), and the penicillamine group (90 mg·kg-1), with 10 rats in each group. A copper-loaded Wilson disease rat model was established by gavage administration of 300 mg·kg-1 copper sulfate pentahydrate to all groups except the normal group. Hematoxylin-eosin (HE) staining and Masson staining were used to observe the pathomorphological changes in the liver. Enzyme-linked immunosorbent assay (ELISA) was employed to measure the levels of hyaluronic acid (HA), laminin (LN), procollagen type-Ⅲ peptide (PC-Ⅲ), and collagen type-Ⅳ (C-Ⅳ). Transmission electron microscopy was used to examine the ultrastructure of liver tissues. Real-time quantitative polymerase chain reaction (Real-time PCR) was used to detect the expression levels of liver tissues and serum exosomal long noncoding RNA H19 (LncRNA H19), phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt), and mammalian target of rapamycin (mTOR). Western blot analysis was performed to assess the expression levels of PI3K, Akt, mTOR, and their phosphorylated forms, as well as autophagy-related proteins Beclin1 and microtubule-associated protein 1 light chain 3B (LC3-Ⅱ/LC3-Ⅰ) in liver tissues. Beclin1 and LC3-Ⅱ fluorescence signal intensity was observed by immunofluorescence. ResultsCompared with the normal group, the model group exhibited inflammatory cell infiltration in hepatocytes, unclear nuclear boundaries with cell cleavage and necrosis, and collagen fiber deposition around confluent areas. The levels of HA, LN, PC-Ⅲ, and C-Ⅳ were significantly elevated (P<0.01). Transmission electron microscopy revealed an increased number of autophagic vesicles, with autophagic lysosomes exhibiting a single-layer membrane structure following degradation of most envelopes. Expression levels of Beclin1 and LC3-Ⅱ/LC3-Ⅰ were significantly increased (P<0.01), and fluorescence signals of Beclin1 and LC3-Ⅱ were markedly enhanced. The protein expression levels of PI3K, Akt, mTOR, p-PI3K, p-Akt, and p-mTOR were reduced (P<0.01), while LncRNA H19 expression was increased (P<0.01), and mRNA expression levels of PI3K, Akt, and mTOR were decreased (P<0.01). After treatment with GDL, the degree of liver fibrosis was significantly improved, with decreased levels of HA, LN, PC-Ⅲ, and C-Ⅳ. The number of autophagic vesicles was significantly reduced, and expression levels of Beclin1 and LC3-Ⅱ/LC3-Ⅰ proteins were lower (P<0.01). The fluorescence signals of Beclin1 and LC3-Ⅱ weakened dose-dependently. The protein levels of PI3K, Akt, mTOR, p-PI3K, p-Akt, and p-mTOR were elevated (P<0.01), while the expression level of LncRNA H19 was reduced (P<0.01). Furthermore, the mRNA expression levels of PI3K, Akt, and mTOR increased (P<0.05, P<0.01). ConclusionGDL may alleviate liver fibrosis and reduce liver injury by regulating the PI3K/Akt/mTOR autophagy signaling pathway via LncRNA H19. 
		                        		
		                        		
		                        		
		                        	
2.Correlations Between Traditional Chinese Medicine Syndromes and Lipid Metabolism in 341 Children with Wilson Disease
Han WANG ; Wenming YANG ; Daiping HUA ; Lanting SUN ; Qiaoyu XUAN ; Wei DONG ; Xin YIN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(15):140-146
		                        		
		                        			
		                        			ObjectiveTo study the correlations between traditional Chinese medicine (TCM) syndromes and lipid metabolism in children with Wilson disease (WD). MethodsClinical data and lipid metabolism indicators [total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), apolipoprotein A1 (ApoA1), apolipoprotein B (ApoB), and lipoprotein a (Lpa)] were retrospectively collected from 341 children with WD. The clinical data were compared among WD children with different syndromes, and the correlations between TCM syndromes and lipid metabolism in children with WD were analyzed. Least absolute shrinkage and selection operator (LASSO) regression was used for variable screening, and unordered multinomial Logistic regression was employed to analyze the effects of lipid metabolism indicators on TCM syndromes. ResultsThe 341 children with WD included 121 (35.5%) children with the dampness-heat accumulation syndrome, 103 (30.2%) children with the liver-kidney Yin deficiency syndrome, 68 children with the combined phlegm and stasis syndrome, 29 children with the spleen-kidney Yang deficiency syndrome, and 20 children with the liver qi stagnation syndrome. The liver-kidney Yin deficiency syndrome, combined phlegm and stasis syndrome, and spleen-kidney Yang deficiency syndrome had correlations with the levels of lipid metabolism indicators (P<0.05). Lipid metabolism abnormalities occurred in 232 (68.0%) children, including hypertriglyceridemia (108), hypercholesterolemia (23), mixed hyperlipidemia (67), lipoprotein a-hyperlipoproteinemia (12), and hypo-HDL-cholesterolemia (22). The percentages of hypertriglyceridemia and hypo-HDL-cholesterolemia varied among children with different TCM syndromes (P<0.05). Correlations existed for the liver-kidney Yin deficiency syndrome with TG, TC, and HDL-C, the combined phlegm and stasis syndrome with TG, the spleen-kidney Yang deficiency syndrome with TG, TC, and LDL-C, and the liver Qi stagnation syndrome with TC and LDL-C (P<0.05, P<0.01). ConclusionThe TCM syndromes of children with WD are dominated by the dampness-heat accumulation syndrome and the liver-kidney Yin deficiency syndrome, and dyslipidemia in the children with WD is dominated by hypertriglyceridemia and mixed hyperlipidemia. There are different correlations between TCM syndromes and lipid metabolism indicators, among which TG, TC, LDL-C, and HDL-C could assist in identifying TCM syndromes in children with WD. 
		                        		
		                        		
		                        		
		                        	
3.Threshold of kurtosis on occupational hearing loss associated with non-steady noise
Yang LI ; Haiying LIU ; Linjie WU ; Jinzhe LI ; Jiarui XIN ; Hua ZOU ; Xin SUN ; Wei QIU ; Changyan YU ; Meibian ZHANG
Journal of Environmental and Occupational Medicine 2025;42(7):779-785
		                        		
		                        			
		                        			Background Kurtosis reflecting noise's temporal structure is an effective metric for evaluating noise-induced hearing loss (NIHL), and its threshold is still unclear. Objective To explore the energy range of kurtosis and the threshold of NIHL induced by kurtosis in this energy rangeMethods Using cross-sectional design, 
		                        		
		                        	
4.Roles of A- and C-weighted kurtosis adjustment for equivalent sound level in evaluating occupational hearing loss
Haiying LIU ; Linjie WU ; Yang LI ; Jinzhe LI ; Jiarui XIN ; Hua ZOU ; Wei QIU ; Tong SHEN ; Meibian ZHANG
Journal of Environmental and Occupational Medicine 2025;42(7):793-799
		                        		
		                        			
		                        			Background Temporal kurtosis (without frequency weighting, i.e., Z-weighted kurtosis) can evaluate noise-induced hearing loss (NIHL). However, few studies have considered the function of frequency weighting (A- or C-weighted) kurtosis on NIHL. Objective To study the significance of A- and C-weighted kurtosis adjustment for equivalent sound level (L'EX,8 h) in evaluating occupational hearing loss. Methods A cross-sectional survey was used to select 973 noise-exposed workers in seven industries as the subjects. The noise exposure of all workers was assessed by distributions of A-, C-, and Z-weighted kurtosis (e.g., KA, KC, and KZ) and respective adjusted equivalent sound level (e.g., L'EX,8 h-KA, L'EX,8 h-KC, and L'EX,8 h-KZ). The significance of A- and C-weighted kurtosis in evaluating NIHL was evaluated by correlations between three types of L'EX,8 h and NIHL, and improvement of noise-induced permanent threshold shift (NIPTS) underestimation predicted by the ISO prediction model (Acoustics—Estimation of noise-induced hearing loss, ISO 1999-2013). Results The median KA, KC, and KZ were 68.33, 28.22, and 19.82, respectively. The binary logistic regression showed that LEX, 8 h-KA, LEX, 8 h-KC, and L'EX, 8 h-KZ were risk factors for NIHL (OR>1, P<0.001). The receiver operating characteristic (ROC) curve showed that when the outcome variable was noise-induced hearing impairment (NIHI), the areas under the curves corresponding to L'EX,8 h-KA, L'EX,8 h-KC, and L'EX,8 h-KZ were 0.625, 0.628, and 0.625, respectively. When the outcome variable was high-frequency noise-induced hearing loss (HFNIHL), the areas under the curves corresponding to L'EX,8 h-KA, L'EX, 8 h-KC, and L'EX,8 h-KZ were 0.624, 0.623, and 0.622, respectively (P<0.05). The order of underestimation improvement values predicted by L'EX,8 h for NIPTS1234 was: L'EX,8 h-KA (4.68 dB HL)>L'EX,8 h-KC (4.38 dB HL)>L'EX,8 h-KZ (4.28 dB HL) (P<0.001). The order of underestimation improvement values predicted by L'EX,8 h-K for NIPTS346 was: L'EX,8 h-KA (7.20 dB HL)>L'EX,8 h-KC (6.83 dB HL)>L'EX,8 h-KZ (6.71 dB HL) (P<0.001). Conclusion The adjustment of A- and C-weighted kurtosis to equivalent sound level LEX,8 h can effectively improve the accuracy of the ISO 1999 prediction model in NIPTS prediction, and compared with the C-weighted, the A-weighted kurtosis can improve the result of the ISO 1999 prediction model in terms of underestimating NIPTS.
		                        		
		                        		
		                        		
		                        	
5.The Regulatory Mechanisms of Dopamine Homeostasis in Behavioral Functions Under Microgravity
Xin YANG ; Ke LI ; Ran LIU ; Xu-Dong ZHAO ; Hua-Lin WANG ; Lan-Qun MAO ; Li-Juan HOU
Progress in Biochemistry and Biophysics 2025;52(8):2087-2102
		                        		
		                        			
		                        			As China accelerates its efforts in deep space exploration and long-duration space missions, including the operationalization of the Tiangong Space Station and the development of manned lunar missions, safeguarding astronauts’ physiological and cognitive functions under extreme space conditions becomes a pressing scientific imperative. Among the multifactorial stressors of spaceflight, microgravity emerges as a particularly potent disruptor of neurobehavioral homeostasis. Dopamine (DA) plays a central role in regulating behavior under space microgravity by influencing reward processing, motivation, executive function and sensorimotor integration. Changes in gravity disrupt dopaminergic signaling at multiple levels, leading to impairments in motor coordination, cognitive flexibility, and emotional stability. Microgravity exposure induces a cascade of neurobiological changes that challenge dopaminergic stability at multiple levels: from the transcriptional regulation of DA synthesis enzymes and the excitability of DA neurons, to receptor distribution dynamics and the efficiency of downstream signaling pathways. These changes involve downregulation of tyrosine hydroxylase in the substantia nigra, reduced phosphorylation of DA receptors, and alterations in vesicular monoamine transporter expression, all of which compromise synaptic DA availability. Experimental findings from space analog studies and simulated microgravity models suggest that gravitational unloading alters striatal and mesocorticolimbic DA circuitry, resulting in diminished motor coordination, impaired vestibular compensation, and decreased cognitive flexibility. These alterations not only compromise astronauts’ operational performance but also elevate the risk of mood disturbances and motivational deficits during prolonged missions. The review systematically synthesizes current findings across multiple domains: molecular neurobiology, behavioral neuroscience, and gravitational physiology. It highlights that maintaining DA homeostasis is pivotal in preserving neuroplasticity, particularly within brain regions critical to adaptation, such as the basal ganglia, prefrontal cortex, and cerebellum. The paper also discusses the dual-edged nature of DA plasticity: while adaptive remodeling of synapses and receptor sensitivity can serve as compensatory mechanisms under stress, chronic dopaminergic imbalance may lead to maladaptive outcomes, such as cognitive rigidity and motor dysregulation. Furthermore, we propose a conceptual framework that integrates homeostatic neuroregulation with the demands of space environmental adaptation. By drawing from interdisciplinary research, the review underscores the potential of multiple intervention strategies including pharmacological treatment, nutritional support, neural stimulation techniques, and most importantly, structured physical exercise. Recent rodent studies demonstrate that treadmill exercise upregulates DA transporter expression in the dorsal striatum, enhances tyrosine hydroxylase activity, and increases DA release during cognitive tasks, indicating both protective and restorative effects on dopaminergic networks. Thus, exercise is highlighted as a key approach because of its sustained effects on DA production, receptor function, and brain plasticity, making it a strong candidate for developing effective measures to support astronauts in maintaining cognitive and emotional stability during space missions. In conclusion, the paper not only underscores the centrality of DA homeostasis in space neuroscience but also reflects the authors’ broader academic viewpoint: understanding the neurochemical substrates of behavior under microgravity is fundamental to both space health and terrestrial neuroscience. By bridging basic neurobiology with applied space medicine, this work contributes to the emerging field of gravitational neurobiology and provides a foundation for future research into individualized performance optimization in extreme environments. 
		                        		
		                        		
		                        		
		                        	
6.Network pharmacology-based mechanism of combined leech and bear bile on hepatobiliary diseases
Chen GAO ; Yu-shi GUO ; Xin-yi GUO ; Ling-zhi ZHANG ; Guo-hua YANG ; Yu-sheng YANG ; Tao MA ; Hua SUN
Acta Pharmaceutica Sinica 2025;60(1):105-116
		                        		
		                        			
		                        			 In order to explore the possible role and molecular mechanism of the combined action of leech and bear bile in liver and gallbladder diseases, this study first used network pharmacology methods to screen the components and targets of leech and bear bile, as well as the related target genes of liver and gallbladder diseases. The selected key genes were subjected to interaction network and GO/KEGG enrichment analysis. Then, using sodium oleate induced HepG2 cell lipid deposition model and 
		                        		
		                        	
7.Study on the traditional Chinese medicine syndromes in 757 cases of children with hepatolenticular degeneration based on factor analysis and cluster analysis
Daiping HUA ; Han WANG ; Qiaoyu XUAN ; Lanting SUN ; Ling XIN ; Xin YIN ; Wenming YANG
Journal of Beijing University of Traditional Chinese Medicine 2025;48(3):303-311
		                        		
		                        			Objective:
		                        			To explore the distribution of traditional Chinese medicine (TCM) syndromes in children with hepatolenticular degeneration (Wilson disease, WD) based on factor analysis and cluster analysis.
		                        		
		                        			Methods:
		                        			From November 2018 to November 2023, general information (gender, age of admission, age of onset, course of disease, clinical staging, Western medicine clinical symptoms, and family history) and TCM four-examination informations (symptoms and signs) were retrospectively collected from 757 cases of children with WD at the First Affiliated Hospital of Anhui University of Chinese Medicine, and factor analysis and cluster analysis were used to investigate TCM syndromes in children with WD.
		                        		
		                        			Results:
		                        			A total of 757 children with WD were included, of which 483 were male and 274 were female; the median age at admission was 12.58 years, the median age at onset was 8.33 years, and the median course of disease was 24.37 months; clinical typing result indicated 506 cases of hepatic type, 133 cases of brain type, 99 cases of mixed-type, and 19 cases of other type; 36.46% of the children had no clinical symptoms (elevated aminotransferases or abnormalities in copper biochemistry); a total of 177 cases had a definite family history, and 10 cases had a suspected family history. Forty-three TCM four-examination information were obtained, with the top 10 in descending order being feeling listless and weak, brown urine, slow action, inappetence, dim complexion, slurred speech, angular salivation, body weight loss, hand and foot tremors, and abdominal fullness. In children with WD, the syndrome element of disease location was primarily characterized by the liver, involving the spleen and kidney, and the syndrome elements of disease nature were characterized by dampness, heat, and yin deficiency. Based on factor analysis and cluster analysis, five TCM syndromes were derived, which were, in order, syndrome of dampness-heat accumulation (265 cases, 35.01%), syndrome of yin deficiency of the liver and kidney (202 cases, 26.68%), syndrome of liver hyperactivity with spleen deficiency (185 cases, 24.44%), syndrome of qi and blood deficiency (79 cases, 10.44%), and syndrome of yang deficiency of the spleen and kidney (26 cases, 3.43%).
		                        		
		                        			Conclusion
		                        			The TCM syndromes of children with WD were primarily syndromes of dampness-heat accumulation, yin deficiency of the liver and kidney, and liver hyperactivity with spleen deficiency. The liver was the main disease location, and the disease nature was characterized by deficiency in origin and excess in superficiality, excess and deficiency mixed. These findings suggest that treating children with WD should be based on the liver while also considering the spleen and kidney.
		                        		
		                        		
		                        		
		                        	
8. Curcumin plays an anti-osteoporosis role by inhibiting NF-κB signaling pathway to reduce oxidative stress damage to osteogenesis
Tian-Tian XU ; Hao-Ehun TIAN ; Xin-Min YANG ; Qi-Hua QI ; Dong-Hua LUO ; Chang-Gen WANG
Chinese Pharmacological Bulletin 2024;40(1):46-54
		                        		
		                        			
		                        			 Aim To investigate the mechanism of curcumin inhibition of oxidative stress on osteogenic differentiation and its dose-dependent anti-osteoporosis effect. Methods Cellular oxidative stress models were used, different concentrations of curcumin were added to determinethebone formation markers, and the potential signaling pathways involvedwere detected. Meanwhile, the mouse model of osteoporosis ( ovariecto- mized, 0VX) was used to confirm its effect against osteoporosis. Results In vitro experiments found that low concentrations of curcumin (1-10 μmol · L 
		                        		
		                        		
		                        		
		                        	
		                				9.Cloning and gene functional analysis study of dynamin-related protein GeDRP1E  gene in Gastrodia elata 
		                			
		                			Xin FAN ; Jian-hao ZHAO ; Yu-chao CHEN ; Zhong-yi HUA ; Tian-rui LIU ; Yu-yang ZHAO ; Yuan YUAN
Acta Pharmaceutica Sinica 2024;59(2):482-488
		                        		
		                        			
		                        			 The gene 
		                        		
		                        	
		                				10.Three 2,3-diketoquinoxaline alkaloids with hepatoprotective activity from Heterosmilax yunnanensis 
		                			
		                			Rong-rong DU ; Xin-yi GUO ; Wen-jie QIN ; Hua SUN ; Xiu-mei DUAN ; Xiang YUAN ; Ya-nan YANG ; Kun LI ; Pei-cheng ZHANG
Acta Pharmaceutica Sinica 2024;59(2):413-417
		                        		
		                        			
		                        			 Three 2,3-diketoquinoxaline alkaloids were isolated from 
		                        		
		                        	
            

Result Analysis
Print
Save
E-mail