1.Application of Recombinant Collagen in Biomedicine
Huan HU ; Hong ZHANG ; Jian WANG ; Li-Wen WANG ; Qian LIU ; Ning-Wen CHENG ; Xin-Yue ZHANG ; Yun-Lan LI
Progress in Biochemistry and Biophysics 2025;52(2):395-416
Collagen is a major structural protein in the matrix of animal cells and the most widely distributed and abundant functional protein in mammals. Collagen’s good biocompatibility, biodegradability and biological activity make it a very valuable biomaterial. According to the source of collagen, it can be broadly categorized into two types: one is animal collagen; the other is recombinant collagen. Animal collagen is mainly extracted and purified from animal connective tissues by chemical methods, such as acid, alkali and enzyme methods, etc. Recombinant collagen refers to collagen produced by gene splicing technology, where the amino acid sequence is first designed and improved according to one’s own needs, and the gene sequence of improved recombinant collagen is highly consistent with that of human beings, and then the designed gene sequence is cloned into the appropriate vector, and then transferred to the appropriate expression vector. The designed gene sequence is cloned into a suitable vector, and then transferred to a suitable expression system for full expression, and finally the target protein is obtained by extraction and purification technology. Recombinant collagen has excellent histocompatibility and water solubility, can be directly absorbed by the human body and participate in the construction of collagen, remodeling of the extracellular matrix, cell growth, wound healing and site filling, etc., which has demonstrated significant effects, and has become the focus of the development of modern biomedical materials. This paper firstly elaborates the structure, type, and tissue distribution of human collagen, as well as the associated genetic diseases of different types of collagen, then introduces the specific process of producing animal source collagen and recombinant collagen, explains the advantages of recombinant collagen production method, and then introduces the various systems of expressing recombinant collagen, as well as their advantages and disadvantages, and finally briefly introduces the application of animal collagen, focusing on the use of animal collagen in the development of biopharmaceutical materials. In terms of application, it focuses on the use of animal disease models exploring the application effects of recombinant collagen in wound hemostasis, wound repair, corneal therapy, female pelvic floor dysfunction (FPFD), vaginal atrophy (VA) and vaginal dryness, thin endometritis (TE), chronic endometritis (CE), bone tissue regeneration in vivo, cardiovascular diseases, breast cancer (BC) and anti-aging. The mechanism of action of recombinant collagen in the treatment of FPFD and CE was introduced, and the clinical application and curative effect of recombinant collagen in skin burn, skin wound, dermatitis, acne and menopausal urogenital syndrome (GSM) were summarized. From the exploratory studies and clinical applications, it is evident that recombinant collagen has demonstrated surprising effects in the treatment of all types of diseases, such as reducing inflammation, promoting cell proliferation, migration and adhesion, increasing collagen deposition, and remodeling the extracellular matrix. At the end of the review, the challenges faced by recombinant collagen are summarized: to develop new recombinant collagen types and dosage forms, to explore the mechanism of action of recombinant collagen, and to provide an outlook for the future development and application of recombinant collagen.
2.Review on alcohol exposure associated embryonic stem cell differentiation mechanisms
Jing GAO ; Bingchun LIU ; Hong CHEN ; Peixin XU ; Xin GUO ; Jianlong YUAN ; Yang LIU
Journal of Environmental and Occupational Medicine 2025;42(5):637-643
Alcohol exposure, as a widespread environmental factor, is highly toxic and teratogenic. Embryonic stem cells (ESCs) are pluripotent and key to development, and their gene expression is tightly regulated, allowing the cells to differentiate without self-renewal. Numerous studies showed that alcohol is an important factor affecting the differentiation of ESCs. In this paper, we systematically summarized four major molecular mechanisms underlying alcohol associated differentiation of ESCs: (1) inhibition of the Wnt signaling pathway; (2) restriction of the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway; (3) alteration of the expression of pluripotent transcription factors; and (4) activation of the nuclear transcriptional program. Through the above mechanisms, alcohol induces aberrant expression of differentiation-related genes and alters the direction of cellular differentiation towards specific lineages, thereby affecting normal embryonic development. Based on the studies on ESCs modeling and other in vitro and in vivo differentiation experiments, the molecular basis of how alcohol affects differentiation by interfering with signaling networks and transcriptional regulation was elucidated, and the results of current research in this field were also summarized, which is crucial for understanding alcohol-mediated toxic effects.
3.Literature analysis of the differences in the occurrence of urinary epithelial carcinoma after kidney transplantation between northern and southern China
Pengjie WU ; Runhua TANG ; Dong WEI ; Yaqun ZHANG ; Hong MA ; Bin JIN ; Xin CHEN ; Jianlong WANG ; Ming LIU ; Yaoguang ZHANG ; Ben WAN ; Jianye WANG
Journal of Modern Urology 2025;30(5):432-437
Objective: To investigate the regional differences in the incidence of urothelial carcinoma among kidney transplant recipients between northern and southern China,so as to provide reference for early diagnosis of this disease. Methods: A comprehensive search was conducted across multiple databases,including CNKI,Wanfang,CBM,and PubMed,using the keywords “kidney transplantation” and “tumor” to collect clinical data from qualified kidney transplant centers.The latest and most complete literature data published by 17 transplant centers in northern China and 14 in southern China were included.Statistical analyses were performed to compare the incidence of post-transplant urothelial carcinoma and non-urothelial malignancies. Results: A total of 37 475 kidney transplant recipients were included,among whom 837 (2.23%) developed post-transplant malignancies,including urothelial carcinoma (366/837,43.73%),non-urothelial carcinoma (444/837,53.05%),and malignancies with unspecified pathology (27/837,3.23%).The incidence of malignancies was significantly higher in northern China than in southern China [(2.82±1.39)% vs. (1.67±0.83)%,P=0.011],with a particularly pronounced difference in the incidence of urothelial carcinoma [(1.68±1.12)% vs. (0.32±0.32)%,P<0.001].No significant difference was observed in the incidence of non-urothelial carcinoma between the two regions [(1.11±0.56)% vs. (1.35±0.65)%,P=0.279].Additionally,female transplant recipients exhibited a higher incidence of malignancies than males in both regions (southern China:2.38% vs. 1.80%; northern China:8.93% vs. 2.52%). Conclusion: The incidence of urothelial carcinoma following kidney transplantation is significantly higher in northern China than in southern China,underscoring the importance of implementing regular tumor screening for kidney transplant recipients,particularly for female patients in northern China,to facilitate early diagnosis and timely intervention.
4.Effects of common environmental pollutants on sperm DNA methylation
Xin GUO ; Bingchun LIU ; Huizeng WANG ; Hong CHEN ; Peixin XU ; Jianlong YUAN
Journal of Environmental and Occupational Medicine 2025;42(7):876-883
Infertility is a common reproductive disorder affecting millions of couples worldwide. It is estimated that male factors account for about 30%-50% of infertility cases, and some studies have found that the concentration of male sperm gradually decreases over time, a trend that suggests the importance of male fertility. Many factors contribute to the decline of male fertility, among which environmental factors have received widespread attention. After reaching adulthood, spermatogonial stem cells will continue to produce sperm, but these cells exist outside the blood testicular barrier, which makes them highly sensitive to environmental conditions such as air pollution, tobacco smoke, radiation, and heavy metals. It is reported that exposure to these adverse environmental factors not only causes oxidative stress and DNA damage to germ cells, but also leads to abnormal epigenetic modification of sperm DNA, thereby causing a series of diseases. This article reviewed the abnormal methylation changes in DNA associated with exposure to environmental pollutants during spermatogenesis and how these changes affect the quantity, quality, and function of spermatozoa.
5.Junctophilin-2 MORN-Helix Domain: Structural Basis for Membrane Binding and Hypertrophic Cardiomyopathy-associated Mutations
Jing-Xin WANG ; Zhi-Wei LI ; Wei LIU ; Wen-Qing ZHANG ; Jian-Chao LI
Progress in Biochemistry and Biophysics 2025;52(8):2103-2116
ObjectiveJunctophilin-2 (JPH2) is an essential structural protein that maintains junctional membrane complexes (JMCs) in cardiomyocytes by tethering the plasma membrane to the sarcoplasmic reticulum, thereby facilitating excitation-contraction (E-C) coupling. Mutations in JPH2 have been associated with hypertrophic cardiomyopathy (HCM), but the molecular mechanisms governing its membrane-binding properties and the functional relevance of its membrane occupation and recognition nexus (MORN) repeat motifs remain incompletely understood. This study aimed to elucidate the structural basis of JPH2 membrane association and its implications for HCM pathogenesis. MethodsA recombinant N-terminal fragment of mouse JPH2 (residues1-440), encompassing the MORN repeats and an adjacent helical region, was purified under near-physiological buffer conditions.X-ray crystallography was employed to determine the structure of the JPH2 MORN-Helix domain. Sequence conservation analysis across species and junctophilin isoforms was performed to assess the evolutionary conservation of key structural features. Functional membrane-binding assays were conducted using liposome co-sedimentation and cell-based localization studies in COS7 and HeLa cells. In addition, site-directed mutagenesis targeting positively charged residues and known HCM-associated mutations, including R347C, was used to evaluate their effects on membrane interaction and subcellular localization. ResultsThe crystal structure of the mouse JPH2 MORN-Helix domain was resolved at 2.6 Å, revealing a compact, elongated architecture consisting of multiple tandem MORN motifs arranged in a curved configuration, forming a continuous hydrophobic core stabilized by alternating aromatic residues. A C-terminal α-helix further reinforced structural integrity. Conservation analysis identified the inner groove of the MORN array as a highly conserved surface, suggesting its role as a protein-binding interface. A flexible linker segment enriched in positively charged residues, located adjacent to the MORN motifs, was found to mediate direct electrostatic interactions with negatively charged phospholipid membranes. Functional assays demonstrated that mutation of these basic residues impaired membrane association, while the HCM-linked R347C mutation completely abolished membrane localization in cellular assays, despite preserving the overall MORN-Helix fold in structural modeling. ConclusionThis study provides structural insight into the membrane-binding mechanism of the cardiomyocyte-specific protein JPH2, highlighting the dual roles of its MORN-Helix domain in membrane anchoring and protein interactions. The findings clarify the structural basis for membrane targeting via a positively charged linker and demonstrate that disruption of this interaction—such as that caused by the R347C mutation—likely contributes to HCM pathogenesis. These results not only enhance current understanding of JPH2 function in cardiac E-C coupling but also offer a structural framework for future investigations into the assembly and regulation of JMCs in both physiological and disease contexts.
6.A Critical Discussion on the Connotation of Children’s Subjectivity in Health Management
Ying DONG ; Hong XU ; Yin WANG ; Xin LIANG ; Suya YANG ; Yumei LIU ; Lili FU ; Yibo WU
Chinese Medical Ethics 2024;35(3):302-309
The discussion on the connotation of children’s subjectivity is not only a response to the lack of children’s subjectivity at the current stage of health management, but also a reference for children’s medical science popularization. Based on the perspective of social critical theory, this study used empirical research methods to review the "Dream Medical College" project of Children’s Hospital of Fudan University. The current situation and influencing factors of health management experience of 1 520 children participating in the "Dream Medical College" project were analyzed. The study showed that 96.35% of 1 316 subjects had diagnosis and treatment experience in specialized hospitals, and the overall negative emotional performance was at a low level (0~12 points). There was significant correlation between diagnosis and treatment, invasive experience and children’s emotional performance (P<0.05). The study revealed that the diagnosis and treatment field is the main practice place of children’s health management, while the subjective of children with different diagnosis and experience perform significantly different. Children over 4 years old have better language anxiety than physical anxiety when receiving diagnosis and treatment. Although medical science popularization is an important practical form of children’s health management, it lacks the science popularization content of invasive diagnosis and treatment and emotional management, and creative popular science form is more suitable for children with long-term and frequent diagnosis and treatment experience.
7. Mechanism of ellagic acid improving cognitive dysfunction in APP/PS double transgenic mice based on PI3K/AKT/GSK-3β signaling pathway
Li-Li ZHONG ; Xin LU ; Ying YU ; Qin-Yan ZHAO ; Jing ZHANG ; Tong-Hui LIU ; Xue-Yan NI ; Li-Li ZHONG ; Yan-Ling CHE ; Dan WU ; Hong LIU
Chinese Pharmacological Bulletin 2024;40(1):90-98
Aim To investigate the effect of ellagic acid (EA) on cognitive function in APP/PS 1 double- transgenic mice, and to explore the regulatory mechanism of ellagic acid on the level of oxidative stress in the hippocampus of double-transgenic mice based on the phosphatidylinositol 3-kinase/protein kinase B/glycogen synthase kinase-3 (PI3K/AKT/GSK-3 β) signaling pathway. Methods Thirty-two SPF-grade 6-month-old APP/PS 1 double transgenic mice were randomly divided into four groups, namely, APP/PS 1 group, APP/PS1 + EA group, APP/PS1 + LY294002 group, APP/PS 1 + EA + LY294002 group, with eight mice in each group, and eight SPF-grade C57BL/6J wild type mice ( Wild type) were selected as the blank control group. The APP/PS 1 + EA group was given 50 mg · kg
8.Learning Curve for Using Endoscopic Saphenous Vein Harvesting in Coronary Artery Bypass Grafting
Weihua ZHANG ; Jian ZHANG ; Xiaoke SUN ; Hong LUO ; Ning MA ; Donghai LIU ; Xin ZHANG ; Chenhui QIAO
Journal of Sun Yat-sen University(Medical Sciences) 2024;45(2):319-323
ObjectiveTo investigate the application of endoscopy in obtaining the great saphenous vein (GSV) during coronary artery bypass grafting (CABG) and explore the learning curve, with a particular focus on common challenges encountered during the learning process and their impact on early clinical outcomes. MethodsA retrospective analysis was conducted on clinical data from 83 patients who underwent off-pump CABG with endoscopic GSV harvesting at the First Affiliated Hospital of Zhengzhou University from July 2013 to April 2014. Patients were categorized into four groups based on the chronological order of their hospitalization: Group A (novice group, n=20), Group B (proficient group, n=20), Group C (progressive group, n=20), and Group D (mature group, n=23). Differences in perioperative and midterm follow-up outcomes among the groups were analyzed to determine the learning curve period. ResultsThe study population had a mean age of (60.22±8.06) years and a mean body weight of (69.77±11.66) kg. Comorbidities included hypertension (24 cases), diabetes (26 cases), and subacute cerebral infarction (14 cases). The novice group exhibited significantly shorter GSV length-to-harvest time ratio relative to the other three groups (P<0.001) and a significantly higher incidence of main vein damage (P=0.006). However, there was no statistically significant difference in graft patency at the 1-year follow-up. ConclusionThorough and reliable technical training in endoscopic GSV harvesting is essential to minimize vascular injury caused by novice operators. Approximately 20 cases of hands-on experience and a careful self-analysis of procedural challenges are likely required to achieve proficiency in GSV harvesting.
9.Research progress on endogenous small-molecule phenolics and the proposal of "phenolomics"
Hong-qian KUI ; Chuan-xin LIU ; Qiang WANG ; Hai-feng ZHAI ; Jian-mei HUANG
Acta Pharmaceutica Sinica 2024;59(2):336-349
Small-molecule phenolic substances widely exist in animals and plants, and have some shared biological activities. The metabolism of phenylalanine and tyrosine in the human body, and especially the metabolism of catecholamine neurotransmitters, produces endogenous small-molecule phenols. Endogenous small-molecule phenolic substances are functionally related to the important physiological processes and the occurrence of mental diseases in humans and some animals, which are systematically sorts and summarized in this review. Integrating the previous experimental research and literature analysis on natural small-molecule phenols by our research group, the understanding of the hypothesis that "small-molecule phenol are pharmacological signal carriers" was deepened. Based on above, the concept of "phenolomics" was further proposed, analyzed the research direction and research content which can bring into the knowledge framework of phenolomics. The induction of phenolomics will provide wider perspectives on explaining the pharmacological mechanism of drugs, discovering new drug targets, and finding biomarkers of mental diseases.
10.Mechanism of salvianolic acid B protecting H9C2 from OGD/R injury based on mitochondrial fission and fusion
Zi-xin LIU ; Gao-jie XIN ; Yue YOU ; Yuan-yuan CHEN ; Jia-ming GAO ; Ling-mei LI ; Hong-xu MENG ; Xiao HAN ; Lei LI ; Ye-hao ZHANG ; Jian-hua FU ; Jian-xun LIU
Acta Pharmaceutica Sinica 2024;59(2):374-381
This study aims to investigate the effect of salvianolic acid B (Sal B), the active ingredient of Salvia miltiorrhiza, on H9C2 cardiomyocytes injured by oxygen and glucose deprivation/reperfusion (OGD/R) through regulating mitochondrial fission and fusion. The process of myocardial ischemia-reperfusion injury was simulated by establishing OGD/R model. The cell proliferation and cytotoxicity detection kit (cell counting kit-8, CCK-8) was used to detect cell viability; the kit method was used to detect intracellular reactive oxygen species (ROS), total glutathione (t-GSH), nitric oxide (NO) content, protein expression levels of mitochondrial fission and fusion, apoptosis-related detection by Western blot. Mitochondrial permeability transition pore (MPTP) detection kit and Hoechst 33342 fluorescence was used to observe the opening level of MPTP, and molecular docking technology was used to determine the molecular target of Sal B. The results showed that relative to control group, OGD/R injury reduced cell viability, increased the content of ROS, decreased the content of t-GSH and NO. Furthermore, OGD/R injury increased the protein expression levels of dynamin-related protein 1 (Drp1), mitofusions 2 (Mfn2), Bcl-2 associated X protein (Bax) and cysteinyl aspartate specific proteinase 3 (caspase 3), and decreased the protein expression levels of Mfn1, increased MPTP opening level. Compared with the OGD/R group, it was observed that Sal B had a protective effect at concentrations ranging from 6.25 to 100 μmol·L-1. Sal B decreased the content of ROS, increased the content of t-GSH and NO, and Western blot showed that Sal B decreased the protein expression levels of Drp1, Mfn2, Bax and caspase 3, increased the protein expression level of Mfn1, and decreased the opening level of MPTP. In summary, Sal B may inhibit the opening of MPTP, reduce cell apoptosis and reduce OGD/R damage in H9C2 cells by regulating the balance of oxidation and anti-oxidation, mitochondrial fission and fusion, thereby providing a scientific basis for the use of Sal B in the treatment of myocardial ischemia reperfusion injury.

Result Analysis
Print
Save
E-mail