1.The effect of rutaecarpine on improving fatty liver and osteoporosis in MAFLD mice
Yu-hao ZHANG ; Yi-ning LI ; Xin-hai JIANG ; Wei-zhi WANG ; Shun-wang LI ; Ren SHENG ; Li-juan LEI ; Yu-yan ZHANG ; Jing-rui WANG ; Xin-wei WEI ; Yan-ni XU ; Yan LIN ; Lin TANG ; Shu-yi SI
Acta Pharmaceutica Sinica 2025;60(1):141-149
Metabolic-associated fatty liver disease (MAFLD) and osteoporosis (OP) are two very common metabolic diseases. A growing body of experimental evidence supports a pathophysiological link between MAFLD and OP. MAFLD is often associated with the development of OP. Rutaecarpine (RUT) is one of the main active components of Chinese medicine Euodiae Fructus. Our previous studies have demonstrated that RUT has lipid-lowering, anti-inflammatory and anti-atherosclerotic effects, and can improve the OP of rats. However, whether RUT can improve both fatty liver and OP symptoms of MAFLD mice at the same time remains to be investigated. In this study, we used C57BL/6 mice fed a high-fat diet (HFD) for 4 months to construct a MAFLD model, and gave the mice a low dose (5 mg·kg-1) and a high dose (15 mg·kg-1) of RUT by gavage for 4 weeks. The effects of RUT on liver steatosis and bone metabolism were then evaluated at the end of the experiment [this experiment was approved by the Experimental Animal Ethics Committee of Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences (approval number: IMB-20190124D303)]. The results showed that RUT treatment significantly reduced hepatic steatosis and lipid accumulation, and significantly reduced bone loss and promoted bone formation. In summary, this study shows that RUT has an effect of improving fatty liver and OP in MAFLD mice.
2.The Ferroptosis-inducing Compounds in Triple Negative Breast Cancer
Xin-Die WANG ; Da-Li FENG ; Xiang CUI ; Su ZHOU ; Peng-Fei ZHANG ; Zhi-Qiang GAO ; Li-Li ZOU ; Jun WANG
Progress in Biochemistry and Biophysics 2025;52(4):804-819
Ferroptosis, a programmed cell death modality discovered and defined in the last decade, is primarily induced by iron-dependent lipid peroxidation. At present, it has been found that ferroptosis is involved in various physiological functions such as immune regulation, growth and development, aging, and tumor suppression. Especially its role in tumor biology has attracted extensive attention and research. Breast cancer is one of the most common female tumors, characterized by high heterogeneity and complex genetic background. Triple negative breast cancer (TNBC) is a special type of breast cancer, which lacks conventional breast cancer treatment targets and is prone to drug resistance to existing chemotherapy drugs and has a low cure rate after progression and metastasis. There is an urgent need to find new targets or develop new drugs. With the increase of studies on promoting ferroptosis in breast cancer, it has gradually attracted attention as a treatment strategy for breast cancer. Some studies have found that certain compounds and natural products can act on TNBC, promote their ferroptosis, inhibit cancer cells proliferation, enhance sensitivity to radiotherapy, and improve resistance to chemotherapy drugs. To promote the study of ferroptosis in TNBC, this article summarized and reviewed the compounds and natural products that induce ferroptosis in TNBC and their mechanisms of action. We started with the exploration of the pathways of ferroptosis, with particular attention to the System Xc--cystine-GPX4 pathway and iron metabolism. Then, a series of compounds, including sulfasalazine (SAS), metformin, and statins, were described in terms of how they interact with cells to deplete glutathione (GSH), thereby inhibiting the activity of glutathione peroxidase 4 (GPX4) and preventing the production of lipid peroxidases. The disruption of the cellular defense against oxidative stress ultimately results in the death of TNBC cells. We have also our focus to the realm of natural products, exploring the therapeutic potential of traditional Chinese medicine extracts for TNBC. These herbal extracts exhibit multi-target effects and good safety, and have shown promising capabilities in inducing ferroptosis in TNBC cells. We believe that further exploration and characterization of these natural compounds could lead to the development of a new generation of cancer therapeutics. In addition to traditional chemotherapy, we discussed the role of drug delivery systems in enhancing the efficacy and reducing the toxicity of ferroptosis inducers. Nanoparticles such as exosomes and metal-organic frameworks (MOFs) can improve the solubility and bioavailability of these compounds, thereby expanding their therapeutic potential while minimizing systemic side effects. Although preclinical data on ferroptosis inducers are relatively robust, their translation into clinical practice remains in its early stages. We also emphasize the urgent need for more in-depth and comprehensive research to understand the complex mechanisms of ferroptosis in TNBC. This is crucial for the rational design and development of clinical trials, as well as for leveraging ferroptosis to improve patient outcomes. Hoping the above summarize and review could provide references for the research and development of lead compounds for the treatment for TNBC.
3.Expert Consensus on Clinical Application of Yifei Zhike Capsules
Xin CUI ; Hongchun ZHANG ; Weiwei GUO ; Chengjun BAN ; Zhifei WANG ; Yuanyuan LI ; Yingjie ZHI ; Xuefeng YU ; Yanming XIE
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):218-224
As an exclusive Miao medicine of Honwing Pharma (Guizhou) Co. Ltd., Yifei Zhike capsules are both a prescription drug and an over-the-counter (OTC) drug. Its main ingredients include Ranunculus ternatus and Panax notoginseng. With the effects of nourishing Yin and moistening the lungs, as well as relieving cough and reducing phlegm, Yifei Zhike capsules are often used in the treatment of acute and chronic bronchitis, pulmonary tuberculosis, and other diseases. However, there is insufficient understanding of their efficacy, suitable syndromes, and safety in clinical practice, with a lack of relevant expert consensus on clinical application. To standardize their clinical application, 30 experts from the fields of respiratory medicine, pharmacy, and evidence-based medicine were invited to develop an Expert Consensus on the Clinical Application of Yifei Zhike Capsules (Consensus for short) through evidence-based medicine methods. The Consensus clarified the syndrome characteristics, disease stages, dosages, treatment courses, combined medication, and other norms in the treatment of acute/chronic bronchitis and pulmonary tuberculosis and could be applicable to clinical physicians and pharmacists in medical and health institutions at all levels. In disease diagnosis, it provided diagnostic criteria for traditional Chinese medicine and Western medicine and clarified that the suitable traditional Chinese medicine syndrome was the syndrome of Qi-Yin deficiency with intermingled phlegm-blood stasis. Clinical studies have confirmed that Yifei Zhike capsules combined with standard anti-tuberculosis therapy can effectively improve the symptoms of pulmonary tuberculosis patients, increase the sputum smear conversion rate, and promote the absorption of lesions. When treating acute cough caused by respiratory tract infections, Yifei Zhike capsules can increase the markedly effective rate and the seven-day disappearance rate of cough symptoms. Meanwhile, recommendations for specific usage, dosages, and treatment courses were given for different diseases, and it was pointed out that long-term medication required key monitoring of adverse reactions. In safety, the adverse reactions of Yifei Zhike capsules involved multiple aspects such as the digestive system and allergic reactions, and pregnant women and women during menstruation were prohibited from using it. In addition, modern research has shown that Yifei Zhike capsules have an adjuvant therapeutic effect on tuberculous pleurisy and may be effective for inflammatory and benign pulmonary nodules. However, further research should be conducted on the toxicological safety of long-term medication. The formulation of the Consensus provides a scientific basis for the rational clinical application of Yifei Zhike capsules, which helps to improve clinical efficacy and reduce medication risks.
4.Expert Consensus on Clinical Application of Yifei Zhike Capsules
Xin CUI ; Hongchun ZHANG ; Weiwei GUO ; Chengjun BAN ; Zhifei WANG ; Yuanyuan LI ; Yingjie ZHI ; Xuefeng YU ; Yanming XIE
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):218-224
As an exclusive Miao medicine of Honwing Pharma (Guizhou) Co. Ltd., Yifei Zhike capsules are both a prescription drug and an over-the-counter (OTC) drug. Its main ingredients include Ranunculus ternatus and Panax notoginseng. With the effects of nourishing Yin and moistening the lungs, as well as relieving cough and reducing phlegm, Yifei Zhike capsules are often used in the treatment of acute and chronic bronchitis, pulmonary tuberculosis, and other diseases. However, there is insufficient understanding of their efficacy, suitable syndromes, and safety in clinical practice, with a lack of relevant expert consensus on clinical application. To standardize their clinical application, 30 experts from the fields of respiratory medicine, pharmacy, and evidence-based medicine were invited to develop an Expert Consensus on the Clinical Application of Yifei Zhike Capsules (Consensus for short) through evidence-based medicine methods. The Consensus clarified the syndrome characteristics, disease stages, dosages, treatment courses, combined medication, and other norms in the treatment of acute/chronic bronchitis and pulmonary tuberculosis and could be applicable to clinical physicians and pharmacists in medical and health institutions at all levels. In disease diagnosis, it provided diagnostic criteria for traditional Chinese medicine and Western medicine and clarified that the suitable traditional Chinese medicine syndrome was the syndrome of Qi-Yin deficiency with intermingled phlegm-blood stasis. Clinical studies have confirmed that Yifei Zhike capsules combined with standard anti-tuberculosis therapy can effectively improve the symptoms of pulmonary tuberculosis patients, increase the sputum smear conversion rate, and promote the absorption of lesions. When treating acute cough caused by respiratory tract infections, Yifei Zhike capsules can increase the markedly effective rate and the seven-day disappearance rate of cough symptoms. Meanwhile, recommendations for specific usage, dosages, and treatment courses were given for different diseases, and it was pointed out that long-term medication required key monitoring of adverse reactions. In safety, the adverse reactions of Yifei Zhike capsules involved multiple aspects such as the digestive system and allergic reactions, and pregnant women and women during menstruation were prohibited from using it. In addition, modern research has shown that Yifei Zhike capsules have an adjuvant therapeutic effect on tuberculous pleurisy and may be effective for inflammatory and benign pulmonary nodules. However, further research should be conducted on the toxicological safety of long-term medication. The formulation of the Consensus provides a scientific basis for the rational clinical application of Yifei Zhike capsules, which helps to improve clinical efficacy and reduce medication risks.
5.Compilation Instructions for Expert Consensus on Clinical Application of Yifei Zhike Capsules
Xin LI ; Hongchun ZHANG ; Xuefeng YU ; Weiwei GUO ; Chengjun BAN ; Zhifei WANG ; Yuanyuan LI ; Yingjie ZHI ; Xin CUI ; Yanming XIE
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(18):143-148
The compilation instructions for the Expert Consensus on Clinical Application of Yifei Zhike Capsules systematically expound the development background, methodological framework, and core achievements of this consensus. In view of the problems existing in the clinical application of Yifei Zhike Capsules, such as insufficient efficacy evidence and lack of standardized syndrome differentiation, the Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences took the lead and collaborated with 21 tertiary grade-A hospitals and research institutions across China to form a multidisciplinary expert group (comprising 30 experts in clinical medicine, pharmacy, and methodology). The compilation work was carried out in strict accordance with the World Health Organization (WHO) guidelines, the GB/T 1.1-2020 standard, and the writing specifications for the explanatory notes of expert consensus on clinical application of Chinese patent medicines. Through systematic literature retrieval (including 32 studies, with 24 clinical studies), Grading of Recommendations Assessment, Development and Evaluations (GRADE)-based evidence grading, and multiple rounds of discussions using the nominal group method (25 experts voted to determine 17 clinical questions), 5 evidence-based recommendations and 11 expert consensus suggestions were formed. It is clarified that this medicine (Yifei Zhike Capsules) is applicable to the treatment of expectoration/hemoptysis in acute and chronic bronchitis and the adjuvant treatment of pulmonary tuberculosis. It is recommended that it can be used alone or in combination with anti-tuberculosis drugs. The safety evaluation shows that this medicine mainly induces the following adverse reactions: mild gastrointestinal reactions (such as nausea and abdominal pain) and rashes. The contraindicated populations include pregnant women and women during menstruation. The compilation process of the consensus underwent three rounds of expert letter reviews, two rounds of peer reviews, and quality control assessments to ensure methodological rigor and clinical applicability. In addition, through policy alignment, academic promotion, and a dynamic revision mechanism, the standardization of clinical application was promoted, providing a demonstration for the evidence-based transformation of characteristic therapies of Miao medicine.
6.Junctophilin-2 MORN-Helix Domain: Structural Basis for Membrane Binding and Hypertrophic Cardiomyopathy-associated Mutations
Jing-Xin WANG ; Zhi-Wei LI ; Wei LIU ; Wen-Qing ZHANG ; Jian-Chao LI
Progress in Biochemistry and Biophysics 2025;52(8):2103-2116
ObjectiveJunctophilin-2 (JPH2) is an essential structural protein that maintains junctional membrane complexes (JMCs) in cardiomyocytes by tethering the plasma membrane to the sarcoplasmic reticulum, thereby facilitating excitation-contraction (E-C) coupling. Mutations in JPH2 have been associated with hypertrophic cardiomyopathy (HCM), but the molecular mechanisms governing its membrane-binding properties and the functional relevance of its membrane occupation and recognition nexus (MORN) repeat motifs remain incompletely understood. This study aimed to elucidate the structural basis of JPH2 membrane association and its implications for HCM pathogenesis. MethodsA recombinant N-terminal fragment of mouse JPH2 (residues1-440), encompassing the MORN repeats and an adjacent helical region, was purified under near-physiological buffer conditions.X-ray crystallography was employed to determine the structure of the JPH2 MORN-Helix domain. Sequence conservation analysis across species and junctophilin isoforms was performed to assess the evolutionary conservation of key structural features. Functional membrane-binding assays were conducted using liposome co-sedimentation and cell-based localization studies in COS7 and HeLa cells. In addition, site-directed mutagenesis targeting positively charged residues and known HCM-associated mutations, including R347C, was used to evaluate their effects on membrane interaction and subcellular localization. ResultsThe crystal structure of the mouse JPH2 MORN-Helix domain was resolved at 2.6 Å, revealing a compact, elongated architecture consisting of multiple tandem MORN motifs arranged in a curved configuration, forming a continuous hydrophobic core stabilized by alternating aromatic residues. A C-terminal α-helix further reinforced structural integrity. Conservation analysis identified the inner groove of the MORN array as a highly conserved surface, suggesting its role as a protein-binding interface. A flexible linker segment enriched in positively charged residues, located adjacent to the MORN motifs, was found to mediate direct electrostatic interactions with negatively charged phospholipid membranes. Functional assays demonstrated that mutation of these basic residues impaired membrane association, while the HCM-linked R347C mutation completely abolished membrane localization in cellular assays, despite preserving the overall MORN-Helix fold in structural modeling. ConclusionThis study provides structural insight into the membrane-binding mechanism of the cardiomyocyte-specific protein JPH2, highlighting the dual roles of its MORN-Helix domain in membrane anchoring and protein interactions. The findings clarify the structural basis for membrane targeting via a positively charged linker and demonstrate that disruption of this interaction—such as that caused by the R347C mutation—likely contributes to HCM pathogenesis. These results not only enhance current understanding of JPH2 function in cardiac E-C coupling but also offer a structural framework for future investigations into the assembly and regulation of JMCs in both physiological and disease contexts.
7.The Invariant Neural Representation of Neurons in Pigeon’s Ventrolateral Mesopallium to Stereoscopic Shadow Shapes
Xiao-Ke NIU ; Meng-Bo ZHANG ; Yan-Yan PENG ; Yong-Hao HAN ; Qing-Yu WANG ; Yi-Xin DENG ; Zhi-Hui LI
Progress in Biochemistry and Biophysics 2025;52(10):2614-2626
ObjectiveIn nature, objects cast shadows due to illumination, forming the basis for stereoscopic perception. Birds need to adapt to changes in lighting (meaning they can recognize stereoscopic shapes even when shadows look different) to accurately perceive different three-dimensional forms. However, how neurons in the key visual brain area in birds handle these lighting changes remains largely unreported. In this study, pigeons (Columba livia) were used as subjects to investigate how neurons in pigeon’s ventrolateral mesopallium (MVL) represent stereoscopic shapes consistently, regardless of changes in lighting. MethodsVisual cognitive training combined with neuronal recording was employed. Pigeons were first trained to discriminate different stereoscopic shapes (concave/convex). We then tested whether and how light luminance angle and surface appearance of the stereoscopic shapes affect their recognition accuracy, and further verify whether the results rely on specify luminance color. Simultaneously, neuronal firing activity of neurons was recorded with multiple electrode array implanted from the MVL during the presentation of difference shapes. The response was finally analyzed how selectively they responded to different stereoscopic shapes and whether their selectivity was affected by the changes of luminance condition (like lighting angle) or surface look. Support vector machine (SVM) models were trained on neuronal population responses recorded under one condition (light luminance angle of 45°) and used to decode responses under other conditions (light luminance angle of 135°, 225°, 315°) to verify the invariance of responses to different luminance conditions. ResultsBehavioral results from 6 pigeons consistently showed that the pigeons could reliably identify the core 3D shape (over 80% accuracy), and this ability wasn’t affected by changes in light angle or surface appearance. Statistical analysis of 88 recorded neurons from 6 pigeons revealed that 83% (73/88) showed strong selectivity for specific 3D shapes (selectivity index>0.3), and responses to convex shapes were consistently stronger than to concave shapes. These shape-selective responses remained stable across changes in light angle and surface appearance. Neural patterns were consistent under both blue and orange lighting. The decoding accuracy achieves above 70%, suggesting stable responses under different conditions (e.g., different lighting angles or surface appearance). ConclusionNeurons in the pigeon MVL maintain a consistent neural encoding pattern for different stereoscopic shapes, unaffected by illumination or surface appearance. This ensures stable object recognition by pigeons in changing visual environments. Our findings provide new physiological evidence for understanding how birds achieve stable perception (“invariant neural representations”) while coping with variations in the visual field.
8.Research progress of anti-gout small molecules targeting the NLRP3 inflammasome
Zhen-qian WANG ; Zhi-jiao ZHANG ; Xin-yong LIU ; Peng ZHAN
Acta Pharmaceutica Sinica 2024;59(3):543-553
Currently, clinically used drugs for the treatment of gout inflammation, such as colchicine, nonsteroidal anti-inflammatory drugs, and glucocorticoids, can only relieve the pain of joint inflammation and have severe hepatorenal toxicity and multiple organ adverse reactions. The NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome is a key complex that induces the onset of gout inflammation and has become a crucial target in the development of anti-gout drugs. This article reviews the research progress of anti-gout small molecules targeting the NLRP3 inflammasome and their bioactivity evaluation methods in the past five years, in order to provide information for the development of specific drugs for the treatment of gout inflammation.
9.Real-time Analysis of Organic Composition of Oral and Nasal Breath Air by High Resolution Mass Spectrometry
Kang-Yi WANG ; Chen TAO ; Xin LUO ; Zhi-Feng TANG ; Te BAI ; Hang LI ; Li-Gang HU ; Wei ZHANG ; Xue LI
Chinese Journal of Analytical Chemistry 2024;52(1):72-79,中插14-中插37
Human exhaled breath has great application prospects,e.g.,monitoring pharmacokinetics,disease diagnosis,due to its advantages such as non-invasive and high-frequency sampling.Breath samples can be collected from the oral and nasal cavity.However,the oral and nasal environment affect the chemical composition of breath sample.Therefore,the investigation on the chemical composition of mouth-exhaled breath and nose-exhaled breath is crucial for selection of appropriate sampling strategy for individual studies.In this work,secondary electrospray ionization-high resolution mass spectrometry(SESI-HRMS)was applied to analysis of respiratory metabolomics in real time.A quantitative analysis approach was established for 9 kinds of volatile organic compounds(VOCs)e.g.2-butanone,2-pentanone,ethyl acetate,methyl methacrylate,toluene,styrene,mesitylene,isoprene and limonene.The limit of detection was 2.3?240.8 ng/m3.The intra-day(n=6)and inter-day(n=18)relative standard deviations were 0.6%?4.6%and 4.3%?12.2%,respectively.Nine healthy subjects were recruited to investigate the chemical composition of mouth-exhaled and nose-exhaled breath.The results showed the good performance in quantitative analysis of 9 VOCs in breath air.It was found that the number of unique component(m/z)detected in mouth-exhaled breath(167)was 2.2 times greater than that detected in nose-exhaled breath(76),which might result from the complex environment in oral cavity.The signal intensity of commun component(163)was significantly different between mouth-exhaled breath and nose-exhaled breath.Additionally,the elemental composition analysis showed that the proportion of polar compounds detected in nose-exhaled breath was higher than that in mouth-exhaled breath.This study demonstrated that there was significant differences in the chemical composition between mouth-exhaled and nose-exhaled breath,which provided a theoretical basis for selection of exhalation mode.
10.Effects of Fuzheng Quxie Prescription Combined with Neoadjuvant Chemotherapy on Tumor Recurrence,Serum Thymidine Kinase 1 Level and Immune Function in Patients with Triple-Negative Breast Cancer
Xiao-Na ZUO ; Yu-Wei XIE ; Xin LIU ; Jia WANG ; Meng LI ; Zhi-Wei HU
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(4):881-887
Objective To investigate the effects of Fuzheng Quxie Prescription(mainly with the actions of supporting healthy qi and dispelling pathogens)combined with neoadjuvant chemotherapy on tumor recurrence,serum thymidine kinase 1(TK1)level and immune function in patients with triple-negative breast cancer(TNBC).Methods Eighty patients with TNBC of qi and yin deficiency type were randomly divided into a combination group and a control group,with 40 patients in each group.The control group was treated with AC-T sequential chemotherapy(Doxorubicin combined with Cyclophosphamide plus sequential Docetaxel),and the combination group was treated with Fuzheng Quxie Prescription on the basis of treatment for the control group.One course of treatment covered 21 days,and the two groups were treated for 4 consecutive courses.The changes of traditional Chinese medicine(TCM)syndrome scores,Karnofsky Performance Status(KPS)score,levels of tumor markers of carbohydrate antigen 125(CA125),carbohydrate antigen 153(CA153)and TK1,and T lymphocyte subset levels in the two groups were observed before and after the treatment.Moreover,the clinical efficacy and tumor metastasis and recurrence in the two groups were compared.Results(1)After 4 courses of treatment,the total effective rate of the combination group was 87.50%(35/40),and that of the control group was 67.50%(27/40),and the intergroup comparison(tested by chi-square test)showed that the efficacy of the combination group was significantly superior to that of the control group(P<0.05).(2)After treatment,the TCM syndrome scores in the two groups were significantly decreased compared with those before treatment(P<0.05),and the KPS scores were significantly increased compared with those before treatment(P<0.05),and the decrease of TCM syndrome scores and the increase of KPS scores in the combination group were significantly superior to that in the control group(P<0.05 or P<0.01).(3)After treatment,the serum CA125,CA153 and TK1 levels of patients in the two groups were significantly decreased compared with those before treatment(P<0.05),and the decrease of serum CA125,CA153 and TK1 levels in the combination group was significantly superior to that in the control group(P<0.01).(4)After treatment,the T lymphocyte subset CD3+,CD4+ levels and CD4+/CD8+ ratio in the two groups were significantly increased compared with those before treatment(P<0.05),and the CD8+ level was significantly decreased compared with that before treatment(P<0.05).The post-treatment intergroup comparison showed that the increase of the T lymphocyte subset CD3+,CD4+ levels and CD4+/CD8+ ratio as well as the decrease of the CD8+ level in the combination group was all significantly superior to that in the control group(P<0.05 or P<0.01).(5)The one-year follow-up showed that the tumor recurrence rate and tumor metastasis rate in the combination group were 7.50%(3/40)and 12.50%(5/40)respectively,significantly lower than 25.00%(10/40)and 35.00%(14/40)in the control group,and the differences were statistically significant when comparing between the two groups(P<0.05).Conclusion The combination of neoadjuvant chemotherapy with Fuzheng Quxie Prescription has a better therapeutic effect on TNBC patients with qi and yin deficiency syndrome,which can effectively improve the immune function of the patients,decrease the level of serum tumor markers,improve the quality of life of the patients,and reduce the incidence of tumor recurrence and metastasis.

Result Analysis
Print
Save
E-mail