1.Application of Recombinant Collagen in Biomedicine
Huan HU ; Hong ZHANG ; Jian WANG ; Li-Wen WANG ; Qian LIU ; Ning-Wen CHENG ; Xin-Yue ZHANG ; Yun-Lan LI
Progress in Biochemistry and Biophysics 2025;52(2):395-416
Collagen is a major structural protein in the matrix of animal cells and the most widely distributed and abundant functional protein in mammals. Collagen’s good biocompatibility, biodegradability and biological activity make it a very valuable biomaterial. According to the source of collagen, it can be broadly categorized into two types: one is animal collagen; the other is recombinant collagen. Animal collagen is mainly extracted and purified from animal connective tissues by chemical methods, such as acid, alkali and enzyme methods, etc. Recombinant collagen refers to collagen produced by gene splicing technology, where the amino acid sequence is first designed and improved according to one’s own needs, and the gene sequence of improved recombinant collagen is highly consistent with that of human beings, and then the designed gene sequence is cloned into the appropriate vector, and then transferred to the appropriate expression vector. The designed gene sequence is cloned into a suitable vector, and then transferred to a suitable expression system for full expression, and finally the target protein is obtained by extraction and purification technology. Recombinant collagen has excellent histocompatibility and water solubility, can be directly absorbed by the human body and participate in the construction of collagen, remodeling of the extracellular matrix, cell growth, wound healing and site filling, etc., which has demonstrated significant effects, and has become the focus of the development of modern biomedical materials. This paper firstly elaborates the structure, type, and tissue distribution of human collagen, as well as the associated genetic diseases of different types of collagen, then introduces the specific process of producing animal source collagen and recombinant collagen, explains the advantages of recombinant collagen production method, and then introduces the various systems of expressing recombinant collagen, as well as their advantages and disadvantages, and finally briefly introduces the application of animal collagen, focusing on the use of animal collagen in the development of biopharmaceutical materials. In terms of application, it focuses on the use of animal disease models exploring the application effects of recombinant collagen in wound hemostasis, wound repair, corneal therapy, female pelvic floor dysfunction (FPFD), vaginal atrophy (VA) and vaginal dryness, thin endometritis (TE), chronic endometritis (CE), bone tissue regeneration in vivo, cardiovascular diseases, breast cancer (BC) and anti-aging. The mechanism of action of recombinant collagen in the treatment of FPFD and CE was introduced, and the clinical application and curative effect of recombinant collagen in skin burn, skin wound, dermatitis, acne and menopausal urogenital syndrome (GSM) were summarized. From the exploratory studies and clinical applications, it is evident that recombinant collagen has demonstrated surprising effects in the treatment of all types of diseases, such as reducing inflammation, promoting cell proliferation, migration and adhesion, increasing collagen deposition, and remodeling the extracellular matrix. At the end of the review, the challenges faced by recombinant collagen are summarized: to develop new recombinant collagen types and dosage forms, to explore the mechanism of action of recombinant collagen, and to provide an outlook for the future development and application of recombinant collagen.
2.CyberKnife Stereotactic Radiosurgery System for Pituitary Tumors and Pulmonary Cancer Bone Metastases: Initiating a New Chapter in Stereotactic Radiotherapy
Weishi CHENG ; Xin LIAN ; Tingtian PANG ; Yue ZHANG ; Yuliang SUN ; Zhikai LIU
Medical Journal of Peking Union Medical College Hospital 2025;16(3):790-796
The CyberKnife, an acronym for the stereotactic radiosurgery platform, represents an image-guided stereotactic radiotherapy technique. This technology precisely delivers ionizing radiation to tissues, effectively damaging tumor cells, and is suitable for radiotherapy of both intracranial and extracranial tumors. This article reports the first performance of CyberKnife by radiotherapy at Peking Union Medical College Hospital, including a patient with uncontrolled pituitary adenoma after surgery and radiotherapy, and another patient with vertebral metastasis following targeted therapy for lung adenocarcinoma. The application of CyberKnife technology in radiotherapy has achieved highly accurate dose delivery, enabling targeted irradiation of tumor lesions while minimizing damage to surrounding normal tissues, thereby yielding relatively ideal clinical outcomes.
3.The Role of Golgi Apparatus Homeostasis in Regulating Cell Death and Major Diseases
Xin-Yue CHENG ; Feng-Hua YAO ; Hui ZHANG ; Yong-Ming YAO
Progress in Biochemistry and Biophysics 2025;52(8):2051-2067
The Golgi apparatus (GA) is a key membranous organelle in eukaryotic cells, acting as a central component of the endomembrane system. It plays an irreplaceable role in the processing, sorting, trafficking, and modification of proteins and lipids. Under normal conditions, the GA cooperates with other organelles, including the endoplasmic reticulum (ER), lysosomes, mitochondria, and others, to achieve the precise processing and targeted transport of nearly one-third of intracellular proteins, thereby ensuring normal cellular physiological functions and adaptability to environmental changes. This function relies on Golgi protein quality control (PQC) mechanisms, which recognize and handle misfolded or aberrantly modified proteins by retrograde transport to the ER, proteasomal degradation, or lysosomal clearance, thus preventing the accumulation of toxic proteins. In addition, Golgi-specific autophagy (Golgiphagy), as a selective autophagy mechanism, is also crucial for removing damaged or excess Golgi components and maintaining its structural and functional homeostasis. Under pathological conditions such as oxidative stress and infection, the Golgi apparatus suffers damage and stress, and its homeostatic regulatory network may be disrupted, leading to the accumulation of misfolded proteins, membrane disorganization, and trafficking dysfunction. When the capacity and function of the Golgi fail to meet cellular demands, cells activate a series of adaptive signaling pathways to alleviate Golgi stress and enhance Golgi function. This process reflects the dynamic regulation of Golgi capacity to meet physiological needs. To date, 7 signaling pathways related to the Golgi stress response have been identified in mammalian cells. Although these pathways have different mechanisms, they all help restore Golgi homeostasis and function and are vital for maintaining overall cellular homeostasis. It is noteworthy that the regulation of Golgi homeostasis is closely related to multiple programmed cell death pathways, including apoptosis, ferroptosis, and pyroptosis. Once Golgi function is disrupted, these signaling pathways may induce cell death, ultimately participating in the occurrence and progression of diseases. Studies have shown that Golgi homeostatic imbalance plays an important pathological role in various major diseases. For example, in Alzheimer’s disease (AD) and Parkinson’s disease (PD), Golgi fragmentation and dysfunction aggravate the abnormal processing of amyloid β-protein (Aβ) and Tau protein, promoting neuronal loss and advancing neurodegenerative processes. In cancer, Golgi homeostatic imbalance is closely associated with increased genomic instability, enhanced tumor cell proliferation, migration, invasion, and increased resistance to cell death, which are important factors in tumor initiation and progression. In infectious diseases, pathogens such as viruses and bacteria hijack the Golgi trafficking system to promote their replication while inducing host defensive cell death responses. This process is also a key mechanism in host-pathogen interactions. This review focuses on the role of the Golgi apparatus in cell death and major diseases, systematically summarizing the Golgi stress response, regulatory mechanisms, and the role of Golgi-specific autophagy in maintaining homeostasis. It emphasizes the signaling regulatory role of the Golgi apparatus in apoptosis, ferroptosis, and pyroptosis. By integrating the latest research progress, it further clarifies the pathological significance of Golgi homeostatic disruption in neurodegenerative diseases, cancer, and infectious diseases, and reveals its potential mechanisms in cellular signal regulation.
4.Comprehensive analysis of insulin products complex disulfide bonds structure by high resolution mass spectrum
Xin-yue HU ; Xiao-li DING ; Yue SUN ; Hui ZHANG ; Jing LI ; Cheng-gang LINAG
Acta Pharmaceutica Sinica 2024;59(1):188-197
The correct pairing of disulfide bonds maintains the correct folding mode and high-level structure formation of peptides and protein drugs, which is crucial for the quality control of products. In order to ensure that the disulfide bonds are correctly paired, disulfide bond analysis is an essential part of peptides and protein drug characterization. Mass spectrometry can be used to analyze disulfide bonds. However, insulin and its analogues have two pairs of disulfide bonds without restriction enzyme cutting site. Conventional collision-induced dissociation (CID) and high-energy induced cleavage (HCD) cannot accurately locate the complex disulfide bond. In our study, three methods were used to localize the complex disulfide, including enzyme digestion combined with key peptide fragment in source decay (ISD) fragmentation method, enzyme digestion combined with partial reduction alkylation method, intact protein source ISD and electron transfer dissociation (ETD) cleavage method, The applicability of insulin aspart, insulin lispro and insulin glargine were also investigated. This study provides a new way for the quality control of disulfide bonding mode of insulin and its analogues, and also provides a reference for the disulfide bond localization of peptides or proteins containing this complex disulfide bond.
5.Detection of Haptoglobin by Surface-Enhanced Raman Scattering Based on the Shift of Characteristic Peak
Si-Qi YUE ; Zhan-Hao MO ; Jun-Qi ZHAO ; Xin QI ; Ling JIN ; Can-Can CUI ; Cheng-Yan HE ; Bing ZHAO
Chinese Journal of Analytical Chemistry 2024;52(2):231-239,中插11-中插13
Acute cerebral infarction(ACI)has the characteristics of onset nasty and high mortality,and thus the rapid determination of the occurrence and development of ACI plays a key role in the diagnosis,treatment and prognosis of ACI patients.It has shown that the serum level of human haptoglobin(Hp)is related to ACI.In this study,surface enhanced Raman scattering(SERS)combined with immune recognition was applied to establish a quantitative analysis method for serum Hp.Firstly,the SERS substrate of silver nanoparticles was prepared on silicon wafer,and 4-mercaptobenzoic Acid(MBA)was used as a Raman probe by forming Ag—S bond and connecting it on the surface of nanoparticles.The carboxyl group of MBA was linked to amino group of self-made high-affinity antibody through forming CO—NH structure thus forming a SERS self-assembled chip of Hp(Ag/MBA/anti-Hp).Hp in serum could be specifically captured by antibodies on SERS substrate,which caused the shift of SERS characteristic peak of MBA.The results showed that there was a good linear relationship between the logarithm of Hp concentration and the SERS characteristic peak shift of MBA.The detection range was 1-1000 ng/mL(R2=0.988).The Hp concentrations in serum of 90 ACI patients were determined by this method,and the results were consistent with those of ELISA method,which proved the practicability and accuracy of this method.This method was highly specific,simple and convenient,which could realize the specific recognition and quantitative analysis of serum Hp,so as to be an effective means for clinical detection of serum Hp,thus providing a reference for the treatment and prognosis of ACI.
6.Tumor Therapy: Targeted Substances Metabolism Reprogramming Induces Tumor Ferroptosis
Jin-Ping ZHANG ; Yue-Qing WANG ; Mo WANG ; Xin-Yue WANG ; Xiao-Qin MOU ; Xi ZHENG ; Chuang CHENG ; Jing HE ; Li-Li ZOU ; Xiao-Wen LIU
Progress in Biochemistry and Biophysics 2024;51(7):1540-1550
There are huge differences between tumor cells and normal cells in material metabolism, and tumor cells mainly show increased anabolism, decreased catabolism, and imbalance in substance metabolism. These differences provide the necessary material basis for the growth and reproduction of tumor cells, and also provide important targets for the treatment of tumors. Ferroptosis is an iron-dependent form of cell death characterized by an imbalance of iron-dependent lipid peroxidation and lipid membrane antioxidant systems in cells, resulting in excessive accumulation of lipid peroxide, causing damage to lipid membrane structure and loss of function, and ultimately cell death. The regulation of ferroptosis involves a variety of metabolic pathways, including glucose metabolism, lipid metabolism, amino acid metabolism, nucleotide metabolism and iron metabolism. In order for tumor cells to grow rapidly, their metabolic needs are more vigorous than those of normal cells. Tumor cells are metabolically reprogrammed to meet their rapidly proliferating material and energy needs. Metabolic reprogramming is mainly manifested in glycolysis and enhancement of pentose phosphate pathway, enhanced glutamine metabolism, increased nucleic acid synthesis, and iron metabolism tends to retain more intracellular iron. Metabolic reprogramming is accompanied by the production of reactive oxygen species and the activation of the antioxidant system. The state of high oxidative stress makes tumor cells more susceptible to redox imbalances, causing intracellular lipid peroxidation, which ultimately leads to ferroptosis. Therefore, in-depth study of the molecular mechanism and metabolic basis of ferroptosis is conducive to the development of new therapies to induce ferroptosis in cancer treatment. Ferroptosis, as a regulated form of cell death, can induce ferroptosis in tumor cells by pharmacologically or genetically targeting the metabolism of substances in tumor cells, which has great potential value in tumor treatment. This article summarizes the effects of cellular metabolism on ferroptosis in order to find new targets for tumor treatment and provide new ideas for clinical treatment.
7.Application of Functionalized Liposomes in The Delivery of Natural Products
Cheng-Yun WANG ; Xin-Yue LAN ; Jia-Xuan GU ; Xin-Ru GAO ; Long-Jiao ZHU ; Jun LI ; Bing FANG ; Wen-Tao XU ; Hong-Tao TIAN
Progress in Biochemistry and Biophysics 2024;51(11):2947-2959
Plant natural products have a wide range of pharmacological properties, not only can they be used as plant dietary supplements to meet the nutritional needs of the human body in the accelerated pace of life, but also occupy an important position in the research and development of therapeutic drugs for the treatment of tumors, inflammation and other diseases, and have been widely accepted by the public due to their good safety. However, despite the above advantages of plant natural products, limiting factors such as low solubility, poor stability, lack of targeting, high toxicity and side effects, and unacceptable odor have greatly impeded their conversion to clinical applications. Therefore, the development of new avenues for the application of new natural products has become an urgent problem to be solved at present. In recent years, with the continuous development of research, various strategies have been developed to improve the bioavailability of natural products. Among them, nanocarrier delivery system is one of the most attractive strategies at present. In past studies, a large number of nanomaterials (organic, inorganic, etc.) have been developed to encapsulate plant-derived natural products for their efficient delivery to specific organs and cells. Up to now, nanotechnology has not only been limited to pharmaceutical applications, but is also competing in the fields of nanofood processing technology and nanoemulsions. Among the various nanocarriers, liposomes are the largest nanocarriers with the largest market share at present. Liposomes are bilayer nanovesicles synthesized from amphiphilic substances, which have advantages such as high drug loading capacity and stability. Attractively, the flexible surface of liposomes can be modified with various functional elements. Functionalized modification of liposomes with different functional elements such as antibodies, nucleic acids, peptides, and stimuli-responsive moieties can bring out the excellent drug delivery function of liposomes to a greater extent. For example, the modification of functional elements with targeting function such as nucleic acids and antibodies on the surface of liposomes can deliver natural products to the target location and improve the bioavailability of drugs; the modification of stimulus-responsive groups such as photosensitizers, magnetic nanoparticles, pH-responsive groups, and temperature sensitizers on the surface of liposomes can achieve controlled release of drugs, localized targeting, and synergistic thermotherapy. In addition to the above properties, by using functionalized liposomes to encapsulate natural products with irritating properties can also effectively mask the irritating properties of natural products, improve public acceptance, and increase the possibility of application of irritating natural products. There are various strategies for modifying liposomes with functional elements, and the properties of functionalized liposomes constructed by different construction strategies differ. The commonly used construction strategies for functionalized liposomes include covalent modification and non-covalent modification. These two types of construction strategies have their own advantages and disadvantages. Covalent modification has better stability than non-covalent modification, but its operation is cumbersome. With the above background, this review focuses on the three typical problems faced by plant natural products at present, and summarizes the specific applications of functionalized liposomes in them. In addition, this paper summarizes the construction strategies for building different types of functionalized liposomes. Finally, this paper will also review the opportunities and challenges faced by functionalized liposomes to enter clinical therapy, and explore the opportunities to overcome these problems, with a view to better realizing the precise control of plant nanomedicines, and providing ideas and inspirations for researchers in related fields as well as relevant industrial staff.
8.Cephalometric parameters of three Wa dialect ethnic groups in China
Yue-Tong YAO ; Ke-Li YU ; Xing-Hua ZHANG ; Xin-Ying GAO ; Yao XIAO ; Zhi CHENG ; Wen-Fang GAO ; Xin LIU ; Jin-Ping BAO
Acta Anatomica Sinica 2024;55(5):625-631
Objective To survey and analysis of cephalometric indicators of Wa adults in China.Methods Cephalometric parameters were measured in 1996 cases(858 males and 1138 females)of Wa adults in China,including 927 cases(381 males and 546 females)of the Baraoke ethnic group,564 cases(241 males and 323 females)of the A Wa ethnic group,and 505 cases(236 males and 269 females)of the Wa ethnic group by using sliding caliper and spreading caliper.Seventeen direct cephalofacial parameters and one indirect parameter for each of the three dialect ethnic groups were derived separately and analyzed for age correlations,inter-sex u-tests,and multiple comparisons.Finally,the three dialect ethnic groups were subjected to cluster analysis and principal component analysis with 15 ethnic groups in China.Results Nose breadth,mouth breadth and physiognomic ear length were significantly and positively correlated with age for both sexes in the three Wa dialect ethnic groups,while head breadth and lip height were significantly and negatively correlated with age.Except for the interocular breadth,there were gender differences between males and females in the cephalometric parameters of the three Wa dialect ethnic groups.The cephalofacial features of the Baraoke,A Wa and Wa ethnic groups were different,as evidenced by the fact that males and females of the Baraoke and Wa dialect ethnic group had higher lip height,wider nasal breadth and wider mouth breadth,while males and females of the A Wa ethnic group had lower nasal height.Conclusion The cephalofacial features of the three Wa dialect ethnic groups are close to those of the Khmus and Mang,who have their origins in the ancient Baipu people and are also members of the Mon-Khmer language group of the Austroasiatic linguistic.
9.Therapeutic effect of aspirin combined with ticagrelor on unstable angina pectoris and its effect on ser-um IL-6,Bip and CHOP levels
Xin JIN ; Cheng-Yue TANG ; An-Fang CHEN
Chinese Journal of cardiovascular Rehabilitation Medicine 2024;33(5):585-589
Objective:To study therapeutic effect of aspirin combined with ticagrelor on unstable angina pectoris(UAP)and its effect on serum levels of interleukin-6(IL-6),binding immunoglobin protein(Bip)and C/EBP homologous protein(CHOP).Methods:A total of 120 UAP patients who were treated in Chengdu Shuangliu Dis-trict First People's Hospital between January 2021 and December 2021 were selected.According to random number table,they were equally divided into combined treatment group(aspirin combined ticagrelor therapy)and aspirin group(aspirin therapy).After 90d treatment,total effective rate,cardiac output(CO),stroke volume(SV),left ventricular ejection fraction(LVEF),frequency and duration of angina,serum levels of IL-6,Bip and CHOP be-fore and after treatment were compared between two groups,as well as incidence of adverse reaction.Results:The total effective rate in combined treatment group was significantly higher than that of aspirin group(95.00%vs.81.67%,P=0.023).Compared with patients in aspirin group after treatment,patients in combined treatment group had significant higher CO[(4.79±0.95)L/min vs.(5.27±1.05)L/min],SV[(52.32±5.25)ml vs.(56.53±4.78)ml]and LVEF[(48.73±4.41)%vs.(54.89±4.77)%],and significant lower frequency[(3.27±0.75)times/week vs.(2.23±0.73)times/week]and duration of angina[(5.42±0.79)min/time vs.(3.51±0.66)min/time],and serum levels of IL-6[(13.49±1.41)pg/L vs.(6.70±0.84)pg/L],Bip[(24.50±1.41)μg/Lvs.(7.45±0.58)μg/L]and CHOP[(35.56±2.69)μg/L vs.(16.66±2.55)μg/L](P<0.05 or<0.01).There was no significant difference in incidence of adverse reactions between two groups(P=0.752).Con-clusion:Aspirin combined with ticagrelor possesses obvious curative effect in treatment of patients with unstable an-gina pectoris.It can significantly improve cardiac function,reduce the inflammatory response and endoplasmic re-ticulum stress in these patients.
10.Significance of 18F-PI-2620 PET imaging for diagnosing tau protein deposition in patients with different cognitive disorders alongside cognitive correlation analysis
Gan HUANG ; Yan ZHANG ; Cheng WANG ; Mei XIN ; Hongda SHAO ; Yue WANG ; Liangrong WAN ; Ju QIU ; Qun XU ; Jianjun LIU ; Xia LI ; Chenpeng ZHANG
Chinese Journal of Nuclear Medicine and Molecular Imaging 2024;44(5):273-278
Objective:To evaluate the values of 18F-PI-2620 PET/CT brain imaging with SUV ratio (SUVR) in the assessment of tau protein deposition in the brain of patients with different cognitive disorders and its correlation with cognition. Methods:This was a cross-sectional study. From December 2019 to November 2022, a total of 67 subjects including 54 patients with Alzheimer′s disease (AD; 21 males, 33 females, age (68.6±7.8) years), 7 patients with mild cognitive impairment (MCI; 1 male, 6 females, age (63.1±11.2) years) and 6 healthy controls (HC; 4 males, 2 females, age (69.0±5.8) years) were enrolled retrospectively in Renji Hospital. All participants were examined by 18F-PI-2620 PET/CT. SUVRs of brain regions were obtained, including frontal lobe, temporal lobe, occipital lobe, parietal lobe, insular lobe, whole brain, as well as 10 independent brain ROIs (amygdala, orbitofrontal cortex, cingulate gyrus, superior occipital gyrus, superior parietal gyrus, inferior angular gyrus, precuneus, inferior temporal gyrus, entorhinal cortex and parahippocampal gyrus), with inferior cerebellum cortex as the reference region. All participants were estimated by cognitive scales(mini-mental state examination (MMSE) and Montreal cognitive assessment (MoCA)). One-way analysis of variance and the least significant difference t test were used to compare the differences of SUVR in each brain region among HC, MCI and AD groups. ROC curve analysis was used to determine the optimal cut-off values of SUVR in each brain region for the differential diagnosis of AD-MCI and AD-HC. Pearson correlation analysis was employed to examine the correlations of SUVR with cognitive scale scores. Results:The SUVR of whole brain was 1.40±0.31 in AD group, 1.08±0.19 in MCI group, and 1.01±0.12 in HC group. SUVR analysis in the whole brain and each brain region could distinguish AD from HC, AD from MCI ( F values: 1.76-10.09, t values: 2.98-7.47, all P<0.05), but could not distinguish HC from MCI ( t values: 0.17-1.53, all P>0.05). ROC curve analysis showed that the best cut-off value of SUVR was 1.18 for whole brain (AUC=0.89), 1.13 for amygdala (AUC=0.94) and 1.26 for parahippocampal gyrus (AUC=0.94) for differential diagnosis of AD and HC, which was 1.06 for whole brain (AUC=0.82), 1.18 for amygdala (AUC=0.88) and 1.28 (AUC=0.88) for infratemporal gyrus to differential diagnosis of AD and MCI. SUVRs of the whole brain, frontal, occipital, parietal, temporal and insula were significantly negatively correlated with MMSE and MoCA cognitive scale scores ( r values: from -0.64 to -0.40, all P<0.05). Conclusions:SUVR quantitative analysis in 18F-PI-2620 PET imaging can assist the differential diagnosis of AD and HC, AD and MCI. The SUVRs of whole brain and five lobes show negative correlations with MMSE and MoCA scores.

Result Analysis
Print
Save
E-mail