1.Network pharmacology-based mechanism of combined leech and bear bile on hepatobiliary diseases
Chen GAO ; Yu-shi GUO ; Xin-yi GUO ; Ling-zhi ZHANG ; Guo-hua YANG ; Yu-sheng YANG ; Tao MA ; Hua SUN
Acta Pharmaceutica Sinica 2025;60(1):105-116
In order to explore the possible role and molecular mechanism of the combined action of leech and bear bile in liver and gallbladder diseases, this study first used network pharmacology methods to screen the components and targets of leech and bear bile, as well as the related target genes of liver and gallbladder diseases. The selected key genes were subjected to interaction network and GO/KEGG enrichment analysis. Then, using sodium oleate induced HepG2 cell lipid deposition model and
2.The effect of rutaecarpine on improving fatty liver and osteoporosis in MAFLD mice
Yu-hao ZHANG ; Yi-ning LI ; Xin-hai JIANG ; Wei-zhi WANG ; Shun-wang LI ; Ren SHENG ; Li-juan LEI ; Yu-yan ZHANG ; Jing-rui WANG ; Xin-wei WEI ; Yan-ni XU ; Yan LIN ; Lin TANG ; Shu-yi SI
Acta Pharmaceutica Sinica 2025;60(1):141-149
Metabolic-associated fatty liver disease (MAFLD) and osteoporosis (OP) are two very common metabolic diseases. A growing body of experimental evidence supports a pathophysiological link between MAFLD and OP. MAFLD is often associated with the development of OP. Rutaecarpine (RUT) is one of the main active components of Chinese medicine Euodiae Fructus. Our previous studies have demonstrated that RUT has lipid-lowering, anti-inflammatory and anti-atherosclerotic effects, and can improve the OP of rats. However, whether RUT can improve both fatty liver and OP symptoms of MAFLD mice at the same time remains to be investigated. In this study, we used C57BL/6 mice fed a high-fat diet (HFD) for 4 months to construct a MAFLD model, and gave the mice a low dose (5 mg·kg-1) and a high dose (15 mg·kg-1) of RUT by gavage for 4 weeks. The effects of RUT on liver steatosis and bone metabolism were then evaluated at the end of the experiment [this experiment was approved by the Experimental Animal Ethics Committee of Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences (approval number: IMB-20190124D303)]. The results showed that RUT treatment significantly reduced hepatic steatosis and lipid accumulation, and significantly reduced bone loss and promoted bone formation. In summary, this study shows that RUT has an effect of improving fatty liver and OP in MAFLD mice.
3.The lysine methyltransferase SMYD2 facilitates neointimal hyperplasia by regulating the HDAC3-SRF axis.
Xiaoxuan ZHONG ; Xiang WEI ; Yan XU ; Xuehai ZHU ; Bo HUO ; Xian GUO ; Gaoke FENG ; Zihao ZHANG ; Xin FENG ; Zemin FANG ; Yuxuan LUO ; Xin YI ; Ding-Sheng JIANG
Acta Pharmaceutica Sinica B 2024;14(2):712-728
Coronary restenosis is an important cause of poor long-term prognosis in patients with coronary heart disease. Here, we show that lysine methyltransferase SMYD2 expression in the nucleus is significantly elevated in serum- and PDGF-BB-induced vascular smooth muscle cells (VSMCs), and in tissues of carotid artery injury-induced neointimal hyperplasia. Smyd2 overexpression in VSMCs (Smyd2-vTg) facilitates, but treatment with its specific inhibitor LLY-507 or SMYD2 knockdown significantly inhibits VSMC phenotypic switching and carotid artery injury-induced neointima formation in mice. Transcriptome sequencing revealed that SMYD2 knockdown represses the expression of serum response factor (SRF) target genes and that SRF overexpression largely reverses the inhibitory effect of SMYD2 knockdown on VSMC proliferation. HDAC3 directly interacts with and deacetylates SRF, which enhances SRF transcriptional activity in VSMCs. Moreover, SMYD2 promotes HDAC3 expression via tri-methylation of H3K36 at its promoter. RGFP966, a specific inhibitor of HDAC3, not only counteracts the pro-proliferation effect of SMYD2 overexpression on VSMCs, but also inhibits carotid artery injury-induced neointima formation in mice. HDAC3 partially abolishes the inhibitory effect of SMYD2 knockdown on VSMC proliferation in a deacetylase activity-dependent manner. Our results reveal that the SMYD2-HDAC3-SRF axis constitutes a novel and critical epigenetic mechanism that regulates VSMC phenotypic switching and neointimal hyperplasia.
4.Research progress on the mechanism of traditional Chinese medicine intervening in esophageal cancer by microRNA regulation
Zhiwen SHEN ; Liqun LI ; Mingyao XU ; Xin LIU ; Jing HUANG ; Xiaoning ZHANG ; Jiaqi YIN ; Sheng XIE
China Pharmacy 2024;35(8):1016-1022
Esophageal cancer (EC) is a common malignant tumor of the digestive system with an extremely poor prognosis. MicroRNA (miRNA) is an important regulator in tumor occurrence and development, and can participate in malignant biological behaviors such as tumor cell proliferation, invasion, metastasis and apoptosis. Traditional Chinese medicine has the characteristics of accurate curative effects, wide range of effects, and few side effects. The review uses miRNA as the entry point to systematically elaborate on the mechanism of traditional Chinese medicine-mediated miRNA intervening in EC. The results showed that active ingredients of traditional Chinese medicine (including curcumin, Tussilago farfara polysaccharides, Atractylodes macrocephala polysaccharides and ophiopogonin B) and Dougen guanshitong oral liquid could up-regulate the expressions of miRNAs such as miRNA-532-3p (miR-532-3p), miR-551b-3p, miR-99a, miR-34a, miR-199a-3p and miR-377; and the active ingredients/parts of traditional Chinese medicine (including chrysin and Actinidia arguta extract), and Chinese herbal formulas (including Chaihu shugan san combined with Xuanfu daizhe decoction and Modified jupi zhuru decoction) could down-regulate the expressions of miRNAs such as miR-199a-3p, miR-451 and miR-21, which could regulate the expressions of signaling pathways (phosphoinositide 3-kinase/protein kinase B, etc.) or their downstream protein(zinc-finger and homeobox protein 1, etc.) or enzymes(thymidine kinase-1, etc.), inhibit the proliferation, invasion and metastasis of EC cells and induce apoptosis, thereby ultimately achieving the purpose of preventing the disease from aggravating.
5.Effect and mechanism of transplantation bone marrow stromal stem cells transfected NRG1 gene on repair of hemi-transected spinal cord injury in rats
Yu-Xuan FU ; Jun CHEN ; Fu-Sheng ZHAO ; Yuan-Yuan LI ; Ke-Xin ZHANG ; Geng WU
Medical Journal of Chinese People's Liberation Army 2024;49(2):204-213
Objective To investigate the effect and mechanism of transplantation of neuregulin1(NRG1)gene-modified bone marrow mesenchymal stem cells(BMSCs)on the repair of hemi-transected spinal cord injury(SCI)in rats.Methods Isolated and cultured rat BMSCs,followed by transfection with the NRG1 gene.The levels of NRG1 in BMSCs lysate and culture supernatant was deected by ELISA method,and the proliferation activity of the BMSCs was detected by cell counting method.Forty-three healthy 8-week-old SD rats were randomly divided into control group(n=10),SCI model group(n=10),BMSCs group(n=10),and NRG1-BMSCs group(n=13).After establishing the spinal cord hemisection model,animals received in-situ transplantation of BMSCs or NRG1-BMSCs.On the 1,7,14,21,and 28 days after transplantation,the hind limb motor function was evaluated using BBB score and inclined plate test;on the 7th day after transplantation,the migration and distribution of transplanted cells was monitored using a fluorescence microscope;on the 28th day after transplantation,the pathological changes of rat spinal cord tissues was examined using HE staining and Nissl staining;cell apoptosis using TUNEL staining,and levels of endoplasmic reticulum stress-related proteins[X-box binding protein 1(XBP1),C/EBP homologous protein(CHOP),activating transcription factor 4(ATF4),ATF6,glucose-regulated protein 78(GRP78)]and apoptosis-related proteins[B-cell lymphoma-2(Bcl-2)and Bcl-2-associated protein X(Bax)]in rat spinal cord tissues using Western blotting.Results BMSCs were successfully isolated,cultured,and transfected with the NRG1 gene.ELISA method results showed that the NRG1 contents in the NRG1-BMSCs lysate and culture supernatant were significantly higher than that of BMSCs in a time-dependent manner(P<0.05).The proliferation activity of NRG1-BMSCs was significantly higher than that of BMSCs(P<0.05).On the 21 and 28 days after transplantation,the BBB score and the slope angle of the inclined plate in NRG1-BMSCs group were higher than those in SCI model group or BMSCs group(P<0.05).However,it did not reverse to the level in control group(P<0.05).On the 28th day after transplantation,compared with the SCI model group and BMSCs group,neuronal pyknosis reduced,the Nissl body density increased,the expression levels of XBP1,CHOP,ATF4,ATF6,GRP78,and Bax,and the rate of TUNEL-positive cells significantly reduced in NRG1-BMSCs group(P<0.05),and the expression level of Bcl-2 significantly increased(P<0.05).Conclusion Transplantation of NRG1 gene-modified BMSCs can alleviate SCI and improve the recovery of motor function in rats.The mechanism may be related to promoting the proliferation activity of BMSCs,inhibiting cell apoptosis,and mitigating endoplasmic reticulum stress.
6.Cadmium promotes senescence of annulus fibrosus cells via activation of PI3K/Akt signaling pathway
Xin LIU ; Man HU ; Wenjie ZHAO ; Yu ZHANG ; Bo MENG ; Sheng YANG ; Qing PENG ; Liang ZHANG ; Jingcheng WANG
Chinese Journal of Tissue Engineering Research 2024;28(8):1217-1222
BACKGROUND:Cadmium is a common environmental pollutant,which can damage multiple organs and tissues,such as the kidney and bone,but its effect on annulus fibrosus cells in the intervertebral disc has been less reported. OBJECTIVE:To investigate the effect of cadmium chloride on the senescence of annulus fibrosus cells and the role of PI3K/Akt signaling pathway. METHODS:Annulus fibrosus cells from Sprague-Dawley rat intervertebral discs were harvested and passage 3 cells were intervened with different concentrations of cadmium chloride(0,1,5,10,20 μmol/L).Cell viability and proliferation were detected by cell counting kit-8 assay.Transcriptome sequencing and Kyoto Encyclopedia of Genes and Genomes functional enrichment analysis were performed on annulus fibrosus cells with or without cadmium chloride addition.Passage 3 annulus fibrosus cells were divided into control group,cadmium chloride group and LY294002 group.Cell proliferation rate was detected by EdU method,positive cell rate was detected by senescence-associated β-galactosidase staining,and expressions of senescence-associated proteins(p16,p21 and p53)and p-Akt at protein and mRNA levels were measured by western blot,RT-PCR and immunofluorescence. RESULTS AND CONCLUSION:5 μmol/L cadmium chloride could inhibit the proliferation of annulus fibrosus cells.Results from the Kyoto Encyclopedia of Genes and Genomes functional enrichment analysis showed that the main signal transduction pathways included PI3K/Akt,cell cycle and p53 signaling pathways,which were related to cell senescence and proliferation.PI3K/Akt signaling pathways with significant differential expression were selected for validation.Compared with the control group,the EdU-positive rate was significantly decreased in the cadmium chloride group(P<0.05),while the β-galactosidase-positive rate,the expression of senescence-associated proteins(p16,p21 and p53)and p-Akt significantly increased(P<0.05).Compared with the cadmium chloride group,the EdU-positive rate and p-Akt expression were significantly decreased in the LY294002 group(P<0.05),while the β-galactosidase-positive rate and the expression of senescence-associated proteins(p16,p21 and p53)significantly increased(P<0.05).To conclude,cadmium chloride can regulate the senescence of annulus fibrosus cells by activating the PI3K/Akt signaling pathway,thereby inducing the occurrence and progression of intervertebral disc degeneration.
7.Role of NF-κB Signaling Pathway in "Reflux Esophagitis-esophageal Cancer" and Traditional Chinese Medicine Intervention:A Review
Mingyao XU ; Liqun LI ; Xin LIU ; Zhiwen SHEN ; Xiaoning ZHANG ; Jing HUANG ; Jiaqi YIN ; Zhu LIU ; Sheng XIE
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(2):221-233
Reflux esophagitis is an inflammatory disease of esophageal mucosa damage caused by the reflux of gastric contents into the esophagus. Its incidence is on the rise, and it has become an important precancerous disease of esophageal cancer. Studies have shown that the continuous inflammatory response stimulates the esophageal mucosa, causing abnormal proliferation of esophageal epithelial cells and damage to esophageal mucosal tissue, which eventually leads to the occurrence of heterogeneous hyperplasia and even carcinogenesis. The nuclear transcription factor-kappa B (NF-κB) signaling pathway is one of the most classical inflammatory and cancer signaling pathways. It has been found that abnormal activation of the NF-κB signaling pathway is crucial to the development and prognosis of reflux esophagitis and esophageal cancer. It is widely involved in the proliferation, autophagy, apoptosis, and inflammatory response of esophageal epithelial cells and tumor cells, accelerating the transformation of reflux esophagitis to esophageal cancer and making it a potential target for the treatment of reflux esophagitis and esophageal cancer. Currently, there is no specific treatment for reflux esophagitis and esophageal cancer, and large side effects often appear. Therefore, finding a promising and safe drug remains a top priority. In recent years, traditional Chinese medicine scholars have conducted a lot of research on NF-κB signaling pathway, and the results indicate that NF-κB signaling pathway is an important potential target for traditional Chinese medicine to prevent and treat reflux esophagitis and esophageal cancer, but there is a lack of comprehensive and systematic elaboration. Therefore, this paper summarized the relevant studies in recent years, analyzed the relationship among NF-κB signaling pathway, reflux esophagitis, esophageal cancer, and transformation from inflammation to cancer, and reviewed the research literature on the regulation of the NF-κB signaling pathway in traditional Chinese medicine to prevent and treat reflux esophagitis and esophageal cancer, so as to provide new ideas for the prevention and treatment of reflux esophagitis and esophageal cancer.
8.A new pyrazine from Hypecoum erectum L.
Yun LIU ; Meng-ya HU ; Wen-jing ZHANG ; Yu-xin FAN ; Rui-wen XU ; Deng-hui ZHU ; Yan-jun SUN ; Wei-sheng FENG ; Hui CHEN
Acta Pharmaceutica Sinica 2024;59(1):183-187
Four pyrazines were isolated from the
9.Specific DNA barcodes screening, germplasm resource identification, and genetic diversity analysis of Platycodon grandiflorum
Xin WANG ; Yue SHI ; Jin-hui MAN ; Yu-ying HUANG ; Xiao-qin ZHANG ; Ke-lu AN ; Gao-jie HE ; Zi-qi LIU ; Fan-yuan GUAN ; Yu-yan ZHENG ; Xiao-hui WANG ; Sheng-li WEI
Acta Pharmaceutica Sinica 2024;59(1):243-252
Platycodonis Radix is the dry root of
10.Establishment and application of a prospective follow-up research method for acute infectious diseases in Shanghai community residents
Yaxu ZHENG ; Xiao YU ; Huanyu WU ; Liming WU ; Jian CHEN ; Wenjia XIAO ; Zhuoying HUANG ; Sheng LIN ; Qiwen FANG ; Rui LIU ; Hao ZHANG ; Xin CHEN
Shanghai Journal of Preventive Medicine 2024;36(1):5-10
ObjectiveTo present the exploration and application of a prospective follow-up research method for acute infectious disease surveillance based on natural community populations, using COVID-19 infection as an example, and to provide a reference for improving the infectious disease surveillance and early warning system. MethodsA multi-stage probability proportional sampling method was employed to sample residents from all communities of 16 administrative districts in Shanghai, with households as the units. A cohort for acute infectious diseases based on natural community populations was established. The baseline survey was conducted for all cohort subjects, and COVID-19 antigen test kits were distributed. From December 21, 2022 to September 30, 2023, prospective follow-up monitoring of COVID-19 antigen and nucleic acid was carried out on the study subjects on a weekly basis. The baseline characteristics and follow-up information of the cohort subjects were described. ResultsThe cohort for acute infectious diseases included a total of 12 881 subjects, comprising 6 098 males (47.3%) and 6 783 females (52.7%). The baseline survey revealed that 35.2% (4 540/12 881) of the subjects had a history of COVID-19 infection. During the follow-up period from December 21, 2022 to September 30, 2023, the average incidence density in the cohort was 0.61/person-year, with a higher incidence density in females (0.63/person-year) compared to males (0.59/person-year). Individuals aged 60 and above (0.64/person-year) and those with underlying health conditions (0.67/person-year) had a higher incidence density. Healthcare workers showed a notably higher incidence density (0.84/person-year) than that in other occupational groups. As of September 30, 2023, a total of 340 subjects in the cohort experienced secondary infections, with a median interval of 170 days between the first and second infections. ConclusionThis study applies cohort study method to acute infectious disease surveillance, providing crucial data support for estimating infection rates and forecasting alerts for acute infectious diseases in the community. This method can be promoted and applied as a new approach for acute infectious disease surveillance.

Result Analysis
Print
Save
E-mail