1.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
2.Efficacy and safety of LY01005 versus goserelin implant in Chinese patients with prostate cancer: A multicenter, randomized, open-label, phase III, non-inferiority trial.
Chengyuan GU ; Zengjun WANG ; Tianxin LIN ; Zhiyu LIU ; Weiqing HAN ; Xuhui ZHANG ; Chao LIANG ; Hao LIU ; Yang YU ; Zhenzhou XU ; Shuang LIU ; Jingen WANG ; Linghua JIA ; Xin YAO ; Wenfeng LIAO ; Cheng FU ; Zhaohui TAN ; Guohua HE ; Guoxi ZHU ; Rui FAN ; Wenzeng YANG ; Xin CHEN ; Zhizhong LIU ; Liqiang ZHONG ; Benkang SHI ; Degang DING ; Shubo CHEN ; Junli WEI ; Xudong YAO ; Ming CHEN ; Zhanpeng LU ; Qun XIE ; Zhiquan HU ; Yinhuai WANG ; Hongqian GUO ; Tiwu FAN ; Zhaozhao LIANG ; Peng CHEN ; Wei WANG ; Tao XU ; Chunsheng LI ; Jinchun XING ; Hong LIAO ; Dalin HE ; Zhibin WU ; Jiandi YU ; Zhongwen FENG ; Mengxiang YANG ; Qifeng DOU ; Quan ZENG ; Yuanwei LI ; Xin GOU ; Guangchen ZHOU ; Xiaofeng WANG ; Rujian ZHU ; Zhonghua ZHANG ; Bo ZHANG ; Wanlong TAN ; Xueling QU ; Hongliang SUN ; Tianyi GAN ; Dingwei YE
Chinese Medical Journal 2023;136(10):1207-1215
BACKGROUND:
LY01005 (Goserelin acetate sustained-release microsphere injection) is a modified gonadotropin-releasing hormone (GnRH) agonist injected monthly. This phase III trial study aimed to evaluated the efficacy and safety of LY01005 in Chinese patients with prostate cancer.
METHODS:
We conducted a randomized controlled, open-label, non-inferiority trial across 49 sites in China. This study included 290 patients with prostate cancer who received either LY01005 or goserelin implants every 28 days for three injections. The primary efficacy endpoints were the percentage of patients with testosterone suppression ≤50 ng/dL at day 29 and the cumulative probability of testosterone ≤50 ng/dL from day 29 to 85. Non-inferiority was prespecified at a margin of -10%. Secondary endpoints included significant castration (≤20 ng/dL), testosterone surge within 72 h following repeated dosing, and changes in luteinizing hormone, follicle-stimulating hormone, and prostate specific antigen levels.
RESULTS:
On day 29, in the LY01005 and goserelin implant groups, testosterone concentrations fell below medical-castration levels in 99.3% (142/143) and 100% (140/140) of patients, respectively, with a difference of -0.7% (95% confidence interval [CI], -3.9% to 2.0%) between the two groups. The cumulative probabilities of maintaining castration from days 29 to 85 were 99.3% and 97.8%, respectively, with a between-group difference of 1.5% (95% CI, -1.3% to 4.4%). Both results met the criterion for non-inferiority. Secondary endpoints were similar between groups. Both treatments were well-tolerated. LY01005 was associated with fewer injection-site reactions than the goserelin implant (0% vs . 1.4% [2/145]).
CONCLUSION:
LY01005 is as effective as goserelin implants in reducing testosterone to castration levels, with a similar safety profile.
TRIAL REGISTRATION
ClinicalTrials.gov, NCT04563936.
Humans
;
Male
;
Antineoplastic Agents, Hormonal/therapeutic use*
;
East Asian People
;
Gonadotropin-Releasing Hormone/agonists*
;
Goserelin/therapeutic use*
;
Prostate-Specific Antigen
;
Prostatic Neoplasms/drug therapy*
;
Testosterone
3.Analysis of Chinese Medical Syndrome Features of Ischemic Stroke Based on Similarity of Symptoms Subgroup.
Xiao-Qing LIU ; Run-Shun ZHANG ; Xue-Zhong ZHOU ; Hong ZHOU ; Yu-Yao HE ; Shu HAN ; Jing ZHANG ; Zi-Xin SHU ; Xue-Bin ZHANG ; Jing-Hui JI ; Quan ZHONG ; Li-Li ZHANG ; Zi-Jun MOU ; Li-Yun HE ; Lun-Zhong ZHANG ; Jie YANG ; Yan-Jie HU ; Zheng-Guang CHEN ; Xiao-Zhen LI ; Yan TAN ; Zhan-Feng YAN ; Ke-Gang CAO ; Wei MENG ; He ZHAO ; Wei ZHANG ; Li-Qun ZHONG
Chinese journal of integrative medicine 2023;29(5):441-447
OBJECTIVE:
To derive the Chinese medicine (CM) syndrome classification and subgroup syndrome characteristics of ischemic stroke patients.
METHODS:
By extracting the CM clinical electronic medical records (EMRs) of 7,170 hospitalized patients with ischemic stroke from 2016 to 2018 at Weifang Hospital of Traditional Chinese Medicine, Shandong Province, China, a patient similarity network (PSN) was constructed based on the symptomatic phenotype of the patients. Thereafter the efficient community detection method BGLL was used to identify subgroups of patients. Finally, subgroups with a large number of cases were selected to analyze the specific manifestations of clinical symptoms and CM syndromes in each subgroup.
RESULTS:
Seven main subgroups of patients with specific symptom characteristics were identified, including M3, M2, M1, M5, M0, M29 and M4. M3 and M0 subgroups had prominent posterior circulatory symptoms, while M3 was associated with autonomic disorders, and M4 manifested as anxiety; M2 and M4 had motor and motor coordination disorders; M1 had sensory disorders; M5 had more obvious lung infections; M29 had a disorder of consciousness. The specificity of CM syndromes of each subgroup was as follows. M3, M2, M1, M0, M29 and M4 all had the same syndrome as wind phlegm pattern; M3 and M0 both showed hyperactivity of Gan (Liver) yang pattern; M2 and M29 had similar syndromes, which corresponded to intertwined phlegm and blood stasis pattern and phlegm-stasis obstructing meridians pattern, respectively. The manifestations of CM syndromes often appeared in a combination of 2 or more syndrome elements. The most common combination of these 7 subgroups was wind-phlegm. The 7 subgroups of CM syndrome elements were specifically manifested as pathogenic wind, pathogenic phlegm, and deficiency pathogens.
CONCLUSIONS
There were 7 main symptom similarity-based subgroups in ischemic stroke patients, and their specific characteristics were obvious. The main syndromes were wind phlegm pattern and hyperactivity of Gan yang pattern.
Humans
;
Syndrome
;
Ischemic Stroke
;
Medicine, Chinese Traditional
;
Liver
;
Phenotype
4.Research regarding the way Danggui Jixueteng decoction affects the hematological function of the bone marrow in rats with aplastic anemia
Ming-Xin GUO ; Wen-Jing LI ; Yao-Xiang SUN ; Zhi-Qiang HU ; Ying SHEN ; Quan-Ping XU
The Chinese Journal of Clinical Pharmacology 2023;39(23):3434-3438
Objective To investigate the effect of Danggui Jixueteng decoction(DJD)on bone marrow hematopoietic function in aplastic anemia(AA)model rats.Methods SD rats were randomly divided into blank group(0.9%NaCl),model group(0.9%NaCl),positive control group(10.8 g·kg-1 Fufang E Jiao Jiang),experimental-H,-M,-L groups(3.10,6.21,12.42 g·kg-1 DJD).AA rat model was established by acetophenylhydrazine combined with cyclophosphamide,and the model was administered at the same time,once a day for 15 days.Body mass,blood routine and hematopoietic factors in bone marrow were determined.Bone marrow smears of rats were observed and bone marrow nucleated cells were counted.Results The amounts of white blood cells in blood routine of experimental-M,experimental-H,positive control,model and blank groups were(2.44±0.46)× 109,(4.26±0.38)×109,(4.57±1.43)×109,(0.96±0.18)×109 and(9.83±0.87)×109·L-1;the amounts of red blood cells were(3.14±0.61)×1012,(3.44±0.35)×1012,(4.06±0.86)×1012,(1.35±0.54)×1012 and(9.61±1.18)×1012·L-1;the amounts of hemoglobin were(87.83±7.25),(108.17±8.93),(99.50±13.81),(22.33±7.63)and(153.92±19.42)g·L-1;the amounts of platelets were(218.50±28.05)×109,(291.83±32.32)×109,(269.33±67.60)×109,(37.50±12.21)×109 and(507.83±181.01)×109·L-1;granulocyte macrophage colony stimulating factor levels in bone marrow were(317.08±31.86),(359.70±36.37),(394.86±23.41),(198.31±14.63)and(379.39±14.95)ng·L-1;vascular endothelial cell adhesion molecule 1 levels were(765.98±60.32),(877.96±24.75),(812.74±66.40),(588.25±58.15)and(929.01±35.50)μg·L-1;interleukin 3 levels were(129.42±6.19),(121.31±12.65),(124.24±2.50),(83.24±11.05),(135.67±7.66)ng·L-1;Caspase-3 levels were(105.49±10.07),(115.49±6.89),(114.36±2.97),(150.62±16.82)and(116.10±4.68)pmol·L-1;the bone marrow injury scores were(1.31±0.18),(1.96±0.09),(1.49±20.42),(3.76±0.19)and(0.05±0.04);the numbers of nucleated cells were(5.79±0.47)×106,(5.12±0.10)×106,(5.56±0.25)×106,(3.20±0.28)×106 and(8.49±0.56)×106·L-1,respectively.Compared with model group,there were significant differences in the experimental-M,-H groups,positive control group,and blank group(P<0.05,P<0.01).Conclusion DJD may improve bone marrow hematopoietic function of AA model rats by regulating bone marrow hematopoietic microenvironment,improving immune function and inhibiting apoptosis.
5.Transcriptome Sequencing of mRNA and lncRNA in Hippocampal Tissues of Rats under Microwave Exposure.
Rui Qing ZHU ; Le Quan SONG ; Lin JIANG ; Yu LIU ; Li ZHAO ; Hao Yu WANG ; Jing ZHANG ; Xin Ping XU ; Ji DONG ; Bin Wei YAO ; Xue Long ZHAO ; Hui WANG ; Xu Liang SHI ; Rui Yun PENG
Biomedical and Environmental Sciences 2022;35(11):1079-1084
6.Drug-resistant gene polymorphisms in Plasmodium falciparum isolated from Bioko Island, Equatorial Guinea in 2018 and 2019
Jin-Quan HE ; Jiang-Tao CHEN ; Jing-He LI ; Wei-Zhong CHEN ; Xue-Yan LIANG ; Hui-Ying HUANG ; Hua-Gui WEI ; Wei-Yi HUANG ; Jun-Li WANG ; Min LIN ; Pei-Kui YANG ; Xin-Yao CHEN ; Xiang-Zhi LIU
Chinese Journal of Schistosomiasis Control 2021;33(4):396-400
Objective To investigate the genetic polymorphisms of Plasmodium falciparum multidrug resistance protein 1 (PfMDR1), chloroquine resistance transporter (PfCRT) and Kelch 13 (PfK13) genes in Bioko Island, Equatorial Guinea, so as to provide insights into the development of the malaria control strategy in local areas. Methods A total of 85 peripheral blood samples were collected from patients with Plasmodium falciparum infections in Bioko Island, Equatorial Guinea in 2018 and 2019, and genomic DNA was extracted. The PfMDR1, PfCRT and PfK13 genes were amplified using a nested PCR assay. The amplification products were sequenced, and the gene sequences were aligned. Results There were no mutations associated with artemisinin resistance in PfK13 gene in Bioko Island, Equatorial Guinea, while drug-resistant mutations were detected in PfMDR1 and PfCRT genes, and the proportions of PfMDR1_N86Y, PfMDR1_Y184F and PfCRT_K76T mutations were 35.29% (30/85), 72.94% (62/85) and 24.71% (21/85), respectively. Conclusion There are mutations in PfMDR1, PfCRT and PfK13 genes in P. falciparum isolates from Bioko Island, Equatorial Guinea.
7.The best option for complicated type B dissection with arch involved.
Chang SHU ; Tun WANG ; Ming-Yao LUO ; Kun FANG ; Quan-Ming LI ; Ming LI ; Xin LI ; Hao HE
Chinese Medical Journal 2021;134(8):883-885
8.Chinese guideline for the application of rectal cancer staging recognition systems based on artificial intelligence platforms (2021 edition).
Yuan GAO ; Yun LU ; Shuai LI ; Yong DAI ; Bo FENG ; Fang-Hai HAN ; Jia-Gang HAN ; Jing-Jing HE ; Xin-Xiang LI ; Guo-Le LIN ; Qian LIU ; Gui-Ying WANG ; Quan WANG ; Zhen-Ning WANG ; Zheng WANG ; Ai-Wen WU ; Bin WU ; Ying-Chi YANG ; Hong-Wei YAO ; Wei ZHANG ; Jian-Ping ZHOU ; Ai-Min HAO ; Zhong-Tao ZHANG
Chinese Medical Journal 2021;134(11):1261-1263
9.A new lignan from Euscaphis konishii.
Jing-Xin CHEN ; Lin NI ; Yao ZHANG ; Jia-Rui FU ; Wei HUANG ; Shuang-Quan ZOU
China Journal of Chinese Materia Medica 2021;46(8):2072-2078
The chemical constituents from the extract of the twigs of Euscaphis konishii with anti-hepatoma activity were investigated, twelve compounds by repeated chromatography with silica gel, Sephadex LH-20 and preparative-HPLC. The structures of the chemical components were elucidated by spectroscopy methods, as konilignan(1),(7R, 8S)-dihydrodehydrodico-niferylalcohol-9-O-β-D-glucopyranoside(2),illiciumlignan B(3),threo-1-(4-hydroxy-3-methoxyphenyl)-2-[4-(3-hydroxypropyl)-2-methoxyphenoxy]-1,3-panediol(4),erythro-1-(4-hydroxy-3-methoxyphenyl)-2-[4-(3-hydroxypropyl)-2-methoxyphenoxy]-1,3-panediol(5), matairesinol(6), wikstromol(7), isolariciresinol(8),(+)-lyoniresinol(9), 4-ketopinoresinol(10), syringaresin(11), and vladinol D(12). Among them, compound 1 is a new lignan. Compounds 10 and 12 had moderate inhibitory activity on HepG2 cells, with IC_(50) values of 107.12 μmol·L~(-1) and 183.56 μmol·L~(-1), respectively.
Chromatography, High Pressure Liquid
;
Lignans/pharmacology*
;
Plant Extracts/pharmacology*
10.Development of a Lateral Flow Strip-Based Recombinase Polymerase Amplification Assay for the Detection of Haemonchus contortus in Goat Feces
Yao-Dong WU ; Qi-Qi WANG ; Meng WANG ; Hany M. ELSHEIKHA ; Xin YANG ; Min HU ; Xing-Quan ZHU ; Min-Jun XU
The Korean Journal of Parasitology 2021;59(2):167-171
Haemonchosis remains a significant problem in small ruminants. In this study, the assay of recombinase polymerase amplification (RPA) combined with the lateral flow strip (LFS-RPA) was established for the rapid detection of Haemonchus contortus in goat feces. The assay used primers and a probe targeting a specific sequence in the ITS-2 gene. We compared the performance of the LFS-RPA assay to a PCR assay. The LFS-RPA had a detection limit of 10 fg DNA, which was 10 times less compared to the lowest detection limit obtained by PCR. Out of 24 goat fecal samples, LFS-RPA assay detected H. contortus DNA with 95.8% sensitivity, compared to PCR, 79.1% sensitivity. LFS-RPA assay did not detect DNA from other related helminth species and demonstrated an adequate tolerance to inhibitors present in the goat feces. Taken together, our results suggest that LFS-RPA assay had a high diagnostic accuracy for the rapid detection of H. contortus and merits further evaluation.

Result Analysis
Print
Save
E-mail