1.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
		                        		
		                        			 Objective:
		                        			To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer. 
		                        		
		                        			Materials and Methods:
		                        			A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs. 
		                        		
		                        			Results:
		                        			All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027). 
		                        		
		                        			Conclusion
		                        			The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer. 
		                        		
		                        		
		                        		
		                        	
2.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
		                        		
		                        			 Objective:
		                        			To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer. 
		                        		
		                        			Materials and Methods:
		                        			A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs. 
		                        		
		                        			Results:
		                        			All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027). 
		                        		
		                        			Conclusion
		                        			The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer. 
		                        		
		                        		
		                        		
		                        	
3.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
		                        		
		                        			 Objective:
		                        			To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer. 
		                        		
		                        			Materials and Methods:
		                        			A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs. 
		                        		
		                        			Results:
		                        			All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027). 
		                        		
		                        			Conclusion
		                        			The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer. 
		                        		
		                        		
		                        		
		                        	
4.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
		                        		
		                        			 Objective:
		                        			To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer. 
		                        		
		                        			Materials and Methods:
		                        			A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs. 
		                        		
		                        			Results:
		                        			All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027). 
		                        		
		                        			Conclusion
		                        			The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer. 
		                        		
		                        		
		                        		
		                        	
5.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
		                        		
		                        			 Objective:
		                        			To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer. 
		                        		
		                        			Materials and Methods:
		                        			A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs. 
		                        		
		                        			Results:
		                        			All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027). 
		                        		
		                        			Conclusion
		                        			The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer. 
		                        		
		                        		
		                        		
		                        	
6.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
		                        		
		                        			
		                        			Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
		                        		
		                        		
		                        		
		                        	
7.Electrotaxis of alveolar epithelial cells in direct-current electric fields.
Chao-Yue YANG ; Jian-Hui SUN ; Kan ZHU ; Juan DU ; Ying ZHANG ; Cong-Hua LU ; Wen-Yi LIU ; Ke-Jun ZHANG ; An-Qiang ZHANG ; Ling ZENG ; Jian-Xin JIANG ; Li LI
Chinese Journal of Traumatology 2023;26(3):155-161
		                        		
		                        			PURPOSE:
		                        			This study aims to elucidate the electrotaxis response of alveolar epithelial cells (AECs) in direct-current electric fields (EFs), explore the impact of EFs on the cell fate of AECs, and lay the foundation for future exploitation of EFs for the treatment of acute lung injury.
		                        		
		                        			METHODS:
		                        			AECs were extracted from rat lung tissues using magnetic-activated cell sorting. To elucidate the electrotaxis responses of AECs, different voltages of EFs (0, 50, 100, and 200 mV/mm) were applied to two types of AECs, respectively. Cell migrations were recorded and trajectories were pooled to better demonstrate cellular activities through graphs. Cell directionality was calculated as the cosine value of the angle formed by the EF vector and cell migration. To further demonstrate the impact of EFs on the pulmonary tissue, the human bronchial epithelial cells transformed with Ad12-SV40 2B (BEAS-2B cells) were obtained and experimented under the same conditions as AECs. To determine the influence on cell fate, cells underwent electric stimulation were collected to perform Western blot analysis.
		                        		
		                        			RESULTS:
		                        			The successful separation and culturing of AECs were confirmed through immunofluorescence staining. Compared with the control, AECs in EFs demonstrated a significant directionality in a voltage-dependent way. In general, type Ⅰ alveolar epithelial cells migrated faster than type Ⅱ alveolar epithelial cells, and under EFs, these two types of cells exhibited different response threshold. For type Ⅱ alveolar epithelial cells, only EFs at 200 mV/mm resulted a significant difference to the velocity, whereas for, EFs at both 100 mV/mm and 200 mV/mm gave rise to a significant difference. Western blotting suggested that EFs led to an increased expression of a AKT and myeloid leukemia 1 and a decreased expression of Bcl-2-associated X protein and Bcl-2-like protein 11.
		                        		
		                        			CONCLUSION
		                        			EFs could guide and accelerate the directional migration of AECs and exert antiapoptotic effects, which indicated that EFs are important biophysical signals in the re-epithelialization of alveolar epithelium in lung injury.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Alveolar Epithelial Cells
		                        			;
		                        		
		                        			Lung
		                        			;
		                        		
		                        			Lung Injury
		                        			;
		                        		
		                        			Cell Movement/physiology*
		                        			
		                        		
		                        	
8.Predictive value of the proportion of hibernating myocardium in total perfusion defect on reverse remodeling in patients with HFrEF underwent coronary artery bypass graft.
Yao LU ; Jian CAO ; En Jun ZHU ; Ming Xin GAO ; Tian Tian MOU ; Ying ZHANG ; Xiao Fen XIE ; Yi TIAN ; Ming Kai YUN ; Jing Jing MENG ; Xiu Bin YANG ; Yong Qiang LAI ; Ran DONG ; Xiao Li ZHANG
Chinese Journal of Cardiology 2023;51(4):384-392
		                        		
		                        			
		                        			Objective: To evaluate the predictive value of the proportion of hibernating myocardium (HM) in total perfusion defect (TPD) on reverse left ventricle remodeling (RR) after coronary artery bypass graft (CABG) in patients with heart failure with reduced ejection fraction (HFrEF) by 99mTc-methoxyisobutylisonitrile (MIBI) single photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) combined with 18F-flurodeoxyglucose (FDG) gated myocardial imaging positron emission computed tomography (PET). Methods: Inpatients diagnosed with HFrEF at the Cardiac Surgery Center, Anzhen Hospital of Capital Medical University from January 2016 to January 2022 were prospectively recruited. MPI combined with 18F-FDG gated PET was performed before surgery for viability assessment and the patients received follow-up MPI and 18F-FDG gated PET at different stages (3-12 months) after surgery. Δ indicated changes (post-pre). Left ventricular end-systolic volume (ESV) reduced at least 10% was defined as RR, patients were divided into reverse remodeling (RR+) group and the non-reverse group (RR-). Binary logistic regression analysis was used to identify predictors of RR. Receiver operating characteristic (ROC) curve analysis was performed and the area under the curve (AUC) was calculated to assess the cut-off value for predicting RR. Additionally, we retrospectively enrolled inpatients with HFrEF at the Cardiac Surgery Center, Anzhen Hospital of Capital Medical University from January 2021 to January 2022 as the validation group, who underwent MPI and 18F-FDG gated PET before surgery. Echocardiography was performed before CABG and after CABG (3-12 months). In the validation group, the reliability of obtaining the cut-off value for the ROC curve was verified. Results: A total of 28 patients with HFrEF (26 males; age (56.9±8.7) years) were included in the prospective cohort. HM/TPD was significantly higher in the RR+ group than in the RR- group ((51.8%±17.9%) vs. (35.7%±13.9%), P=0.016). Binary logistic regression analysis revealed that HM/TPD was an independent predictor of RR (Odds ratio=1.073, 95% Confidence interval: 1.005-1.145, P=0.035). ROC curve analysis revealed that HM/TPD=38.3% yielded the highest sensitivity, specificity, and accuracy (all 75%) for predicting RR and the AUC was 0.786 (P=0.011). Meanwhile, a total of 100 patients with HFrEF (90 males; age (59.7±9.6) years) were included in the validation group. In the validation group, HM/TPD=38.3% predicted RR in HFrEF patients after CABG with the highest sensitivity, specificity and accuracy (82%, 60% and 73% respectively). Compared with the HFrEF patients in the HM/TPD<38.3% group (n=36), RR and cardiac function improved more significantly in the HM/TPD≥38.3% group (n=64) (all P<0.05). Conclusions: Preoperative HM/TPD ratio is an independent factor for predicting RR in patients with HFrEF after CABG, and HM/TPD≥38.3% can accurately predict RR and the improvement of cardiac function after CABG.
		                        		
		                        		
		                        		
		                        			Male
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Middle Aged
		                        			;
		                        		
		                        			Aged
		                        			;
		                        		
		                        			Stroke Volume
		                        			;
		                        		
		                        			Heart Failure
		                        			;
		                        		
		                        			Fluorodeoxyglucose F18
		                        			;
		                        		
		                        			Retrospective Studies
		                        			;
		                        		
		                        			Reproducibility of Results
		                        			;
		                        		
		                        			Prospective Studies
		                        			;
		                        		
		                        			Coronary Artery Bypass
		                        			;
		                        		
		                        			Ventricular Dysfunction, Left
		                        			;
		                        		
		                        			Tomography, Emission-Computed, Single-Photon
		                        			;
		                        		
		                        			Perfusion
		                        			;
		                        		
		                        			Myocardium
		                        			
		                        		
		                        	
9.Expert consensus on late stage of critical care management.
Bo TANG ; Wen Jin CHEN ; Li Dan JIANG ; Shi Hong ZHU ; Bin SONG ; Yan Gong CHAO ; Tian Jiao SONG ; Wei HE ; Yang LIU ; Hong Min ZHANG ; Wen Zhao CHAI ; Man hong YIN ; Ran ZHU ; Li Xia LIU ; Jun WU ; Xin DING ; Xiu Ling SHANG ; Jun DUAN ; Qiang Hong XU ; Heng ZHANG ; Xiao Meng WANG ; Qi Bing HUANG ; Rui Chen GONG ; Zun Zhu LI ; Mei Shan LU ; Xiao Ting WANG
Chinese Journal of Internal Medicine 2023;62(5):480-493
		                        		
		                        			
		                        			We wished to establish an expert consensus on late stage of critical care (CC) management. The panel comprised 13 experts in CC medicine. Each statement was assessed based on the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) principle. Then, the Delphi method was adopted by 17 experts to reassess the following 28 statements. (1) ESCAPE has evolved from a strategy of delirium management to a strategy of late stage of CC management. (2) The new version of ESCAPE is a strategy for optimizing treatment and comprehensive care of critically ill patients (CIPs) after the rescue period, including early mobilization, early rehabilitation, nutritional support, sleep management, mental assessment, cognitive-function training, emotional support, and optimizing sedation and analgesia. (3) Disease assessment to determine the starting point of early mobilization, early rehabilitation, and early enteral nutrition. (4) Early mobilization has synergistic effects upon the recovery of organ function. (5) Early functional exercise and rehabilitation are important means to promote CIP recovery, and gives them a sense of future prospects. (6) Timely start of enteral nutrition is conducive to early mobilization and early rehabilitation. (7) The spontaneous breathing test should be started as soon as possible, and a weaning plan should be selected step-by-step. (8) The waking process of CIPs should be realized in a planned and purposeful way. (9) Establishment of a sleep-wake rhythm is the key to sleep management in post-CC management. (10) The spontaneous awakening trial, spontaneous breathing trial, and sleep management should be carried out together. (11) The depth of sedation should be adjusted dynamically in the late stage of CC period. (12) Standardized sedation assessment is the premise of rational sedation. (13) Appropriate sedative drugs should be selected according to the objectives of sedation and drug characteristics. (14) A goal-directed minimization strategy for sedation should be implemented. (15) The principle of analgesia must be mastered first. (16) Subjective assessment is preferred for analgesia assessment. (17) Opioid-based analgesic strategies should be selected step-by-step according to the characteristics of different drugs. (18) There must be rational use of non-opioid analgesics and non-drug-based analgesic measures. (19) Pay attention to evaluation of the psychological status of CIPs. (20) Cognitive function in CIPs cannot be ignored. (21) Delirium management should be based on non-drug-based measures and rational use of drugs. (22) Reset treatment can be considered for severe delirium. (23) Psychological assessment should be conducted as early as possible to screen-out high-risk groups with post-traumatic stress disorder. (24) Emotional support, flexible visiting, and environment management are important components of humanistic management in the intensive care unit (ICU). (25) Emotional support from medical teams and families should be promoted through"ICU diaries"and other forms. (26) Environmental management should be carried out by enriching environmental content, limiting environmental interference, and optimizing the environmental atmosphere. (27) Reasonable promotion of flexible visitation should be done on the basis of prevention of nosocomial infection. (28) ESCAPE is an excellent project for late stage of CC management.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Consensus
		                        			;
		                        		
		                        			Critical Care/methods*
		                        			;
		                        		
		                        			Intensive Care Units
		                        			;
		                        		
		                        			Pain/drug therapy*
		                        			;
		                        		
		                        			Analgesics/therapeutic use*
		                        			;
		                        		
		                        			Delirium/therapy*
		                        			;
		                        		
		                        			Critical Illness
		                        			
		                        		
		                        	
10.Mechanism of Huangjing Qianshi Decoction in treatment of prediabetic mice based on transcriptome sequencing.
Jia-Luo CAI ; Yi-Lin ZHU ; Xiao-Ping LI ; Xin-Hua XIA ; Gui-Ming DENG ; Qiao-Zhen TONG ; Gang-Qiang YI ; Bo CHENG
China Journal of Chinese Materia Medica 2023;48(4):1032-1042
		                        		
		                        			
		                        			Based on transcriptome sequencing technology, the mouse model of prediabetes treated with Huangjing Qianshi Decoction was sequenced to explore the possible mechanism of treating prediabetes. First of all, transcriptome sequencing was performed on the normal BKS-DB mouse group, the prediabetic model group, and the Huangjing Qianshi Decoction treatment group(treatment group) to obtain differentially expressed genes in the skeletal muscle samples of mice. The serum biochemical indexes were detected in each group to screen out the core genes of Huangjing Qianshi Decoction in prediabetes. Gene Ontology(GO) database and Kyoto Encyclopedia of Genes and Genomes(KEGG) database were used to conduct signaling pathway enrichment analysis of differentially expressed genes, and real-time quantitative polymerase chain reaction(RT-qPCR) was used to verify them. The results showed that the levels of fasting blood glucose(FBG), fasting insulin(FINS), insulin resistance index(HOMA-IR), total cholesterol(TC), triglycerides(TG), and low-density lipoprotein cholesterol(LDL-C) in the mouse model were significantly decreased after treatment with Huangjing Qianshi Decoction. In the results of differential gene screening, there were 1 666 differentially expressed genes in the model group as compared with the normal group, and there were 971 differentially expressed genes in the treatment group as compared with the model group. Among them, interleukin-6(IL-6) and NR3C2 genes, which were closely related to the regulation of insulin resis-tance function, were significantly up-regulated between the model group and the normal group, and vascular endothelial growth factor A(VEGFA) genes were significantly down-regulated between the model group and the normal group. However, the expression results of IL-6, NR3C2, and VEGFA genes were adverse between the treatment group and the model group. GO functional enrichment analysis found that the biological process annotation mainly focused on cell synthesis, cycle, and metabolism; cell component annotation mainly focused on organelles and internal components; and molecular function annotation mainly focused on binding molecular functions. KEGG pathway enrichment analysis found that it involved the protein tyrosine kinase 6(PTK6) pathway, CD28-dependent phosphoinositide 3-kinase/protein kinase B(PI3K/AKT) pathway, p53 pathway, etc. Therefore, Huangjing Qianshi Decoction can improve the state of prediabetes, and the mechanism may be related to cell cycle and apoptosis, PI3K/AKT pathway, p53 pathway, and other biological pathways regulated by IL-6, NR3C2, and VEGFA.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Proto-Oncogene Proteins c-akt
		                        			;
		                        		
		                        			Phosphatidylinositol 3-Kinases
		                        			;
		                        		
		                        			Prediabetic State
		                        			;
		                        		
		                        			Vascular Endothelial Growth Factor A
		                        			;
		                        		
		                        			Interleukin-6
		                        			;
		                        		
		                        			Transcriptome
		                        			;
		                        		
		                        			Tumor Suppressor Protein p53
		                        			;
		                        		
		                        			Insulin
		                        			;
		                        		
		                        			Cholesterol
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail