1.Research and Application of Scalp Surface Laplacian Technique
Rui-Xin LUO ; Si-Ying GUO ; Xin-Yi LI ; Yu-He ZHAO ; Chun-Hou ZHENG ; Min-Peng XU ; Dong MING
Progress in Biochemistry and Biophysics 2025;52(2):425-438
Electroencephalogram (EEG) is a non-invasive, high temporal-resolution technique for monitoring brain activity. However, affected by the volume conduction effect, EEG has a low spatial resolution and is difficult to locate brain neuronal activity precisely. The surface Laplacian (SL) technique obtains the Laplacian EEG (LEEG) by estimating the second-order spatial derivative of the scalp potential. LEEG can reflect the radial current activity under the scalp, with positive values indicating current flow from the brain to the scalp (“source”) and negative values indicating current flow from the scalp to the brain (“sink”). It attenuates signals from volume conduction, effectively improving the spatial resolution of EEG, and is expected to contribute to breakthroughs in neural engineering. This paper provides a systematic overview of the principles and development of SL technology. Currently, there are two implementation paths for SL technology: current source density algorithms (CSD) and concentric ring electrodes (CRE). CSD performs the Laplace transform of the EEG signals acquired by conventional disc electrodes to indirectly estimate the LEEG. It can be mainly classified into local methods, global methods, and realistic Laplacian methods. The global method is the most commonly used approach in CSD, which can achieve more accurate estimation compared with the local method, and it does not require additional imaging equipment compared with the realistic Laplacian method. CRE employs new concentric ring electrodes instead of the traditional disc electrodes, and measures the LEEG directly by differential acquisition of the multi-ring signals. Depending on the structure, it can be divided into bipolar CRE, quasi-bipolar CRE, tripolar CRE, and multi-pole CRE. The tripolar CRE is widely used due to its optimal detection performance. While ensuring the quality of signal acquisition, the complexity of its preamplifier is relatively acceptable. Here, this paper introduces the study of the SL technique in resting rhythms, visual-related potentials, movement-related potentials, and sensorimotor rhythms. These studies demonstrate that SL technology can improve signal quality and enhance signal characteristics, confirming its potential applications in neuroscientific research, disease diagnosis, visual pathway detection, and brain-computer interfaces. CSD is frequently utilized in applications such as neuroscientific research and disease detection, where high-precision estimation of LEEG is required. And CRE tends to be used in brain-computer interfaces, that have stringent requirements for real-time data processing. Finally, this paper summarizes the strengths and weaknesses of SL technology and envisages its future development. SL technology boasts advantages such as reference independence, high spatial resolution, high temporal resolution, enhanced source connectivity analysis, and noise suppression. However, it also has shortcomings that can be further improved. Theoretically, simulation experiments should be conducted to investigate the theoretical characteristics of SL technology. For CSD methods, the algorithm needs to be optimized to improve the precision of LEEG estimation, reduce dependence on the number of channels, and decrease computational complexity and time consumption. For CRE methods, the electrodes need to be designed with appropriate structures and sizes, and the low-noise, high common-mode rejection ratio preamplifier should be developed. We hope that this paper can promote the in-depth research and wide application of SL technology.
2.Mass Spectrometry-based Cell Imaging
Peng ZHOU ; Xin WANG ; Qian LUO ; Chao ZHAO
Progress in Biochemistry and Biophysics 2025;52(4):858-868
Cell models can simulate a variety of life states and disease developments, including single cells, two-dimensional (2D) cell cultures, three-dimensional (3D) multicellular spheroids, and organoids. They are essential tools for addressing complex biochemical questions. With continuous advancements in biological and cellular analysis technologies, in vitro cellular models designed to answer scientific questions have evolved rapidly. Early in vitro models primarily relied on 2D systems, which failed to accurately replicate the complex cellular compositions and microenvironmental interactions observed in vivo, let alone support sophisticated investigations into cellular biological functions. Subsequent improvements in cell culture techniques led to the development of 3D culture-based models, such as cellular spheroids. The advent of pluripotent stem cell technology further advanced the development of organoid systems, which closely mimic human organ development. Compared to traditional 2D models, both 3D cellular models and organoids offer significant advantages, including personalization and enhanced physiological relevance, making them particularly suitable for exploring molecular mechanisms of disease progression, discovering novel cellular and biomolecular functions, and conducting related studies. The imaging analysis of common cellular models primarily employs labeling-based methods for in situ imaging of targeted genes, proteins, and small-molecule metabolites, enabling further research on cell types, states, metabolism, and drug efficacy. However, these approaches have drawbacks such as poor labeling specificity and complex experimental procedures. By using cells as experimental models, mass spectrometry technology combined with morphological analysis can reveal quantitative changes and spatial distributions of various biological substances at the spatiotemporal level, including metabolites, proteins, lipids, peptides, drugs, environmental pollutants, and metals. This allows for the investigation of cell-cell interactions, tumor microenvironments, and cellular bioinformational heterogeneity. The application of these cutting-edge imaging technologies generates vast amounts of cellular data, necessitating the development of rapid, efficient, and highly accurate image data algorithms for precise segmentation and identification of single cells, multi-organelle structures, rare cell subpopulations, and complex cellular morphologies. A critical focus lies in creating deep learning models and algorithms that enhance the accuracy of cellular visualization. At the same time, establishing more robust data integration tools is essential not only for analyzing and interpreting outputs but also for effectively uncovering the biological significance of spatially resolved mass spectrometry data. Developing a cell imaging platform with high versatility, operational stability, and specificity to enable data interoperability will significantly enhance its utility in clinical research, thereby advancing investigations into disease molecular mechanisms and supporting precision diagnostics and therapeutics. In contrast to genomic, transcriptomic, and proteomic information, the metabolome can rapidly respond to external stimuli and cellular physiological changes within a short timeframe. This rapid and precise reflection of ongoing cellular state alterations has positioned spatial metabolomics as a pivotal approach for exploring the molecular mechanisms underlying physiological and pathological processes in cells, tissues, and organisms. In this review, we summarize research on cell imaging based on mass spectrometry technologies, including the selection and preparation of cell models, morphological analysis of cell models, spatial omics techniques based on mass spectrometry, mass cytometry, and their applications. We also discuss the current challenges and propose future directions for development in this field.
3.Effect of Shenshu Fujian Decoction on PDGF/NKD2/Wnt Signaling Pathway in Rats with Chronic Renal Failure
Peng DENG ; Xuekuan HUANG ; Hongyu LUO ; Yuxia JIN ; Dandan WANG ; Xin CHEN ; Shuxian YANG ; Honglin WANG ; Munan WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(15):79-86
ObjectiveTo observe the effect of Shenshu Fujian decoction on platelet-derived growth factor (PDGF)/naked cuticle homolog 2 (NKD2) /Wnt signaling pathway in rats with chronic renal failure (CRF). MethodsSixty male SD rats were randomly divided into normal group, model group, Niaoduqing group (5 g·kg-1), low-dose Shenshu Fujian decoction group (5.5 g·kg-1), medium-dose Shenshu Fujian decoction group (11 g·kg-1), and high-dose Shenshu Fujian decoction group (22 g·kg-1), with 10 rats in each group. A CRF rat model was established by feeding a 0.5% adenine diet for 21 days. After successful modeling, intragastric administration was given once daily for 28 consecutive days. After treatment, the renal morphology of rats was observed. Serum creatinine (SCr) and blood urea nitrogen (BUN) levels were detected. Hematoxylin-eosin (HE) staining and Masson staining were used to detect renal histopathological changes, and collagen volume fraction (CVF) was calculated. Serum levels of inflammatory markers interleukin (IL)-1β and IL-6 were measured using enzyme-linked immunosorbent assay (ELISA). The expressions of fibronectin 1 (FN1), type Ⅰ collagen (ColⅠ), α-smooth muscle actin (α-SMA), platelet-derived growth factor receptor-β (PDGFR-β), NKD2, dishevelled protein 2 (DVL2) and β-catenin in renal tissue were detected by immunohistochemistry and Western blot. ResultsCompared with the normal group, the model group showed significant renal pathological changes, a markedly increased kidney weight/body weight ratio (P<0.01), significantly elevated CVF (P<0.01), and notably increased serum levels of SCr, BUN, IL-1β, and IL-6 (P<0.01). Expression levels of FN1, ColⅠ, α-SMA, PDGFR-β, NKD2, DVL2, and β-catenin in renal tissue were also significantly increased (P<0.01). Compared with the model group, all treatment groups showed significantly decreased kidney weight/body weight ratios and CVF (P<0.01), as well as markedly decreased serum SCr, BUN, IL-1β, and IL-6 levels. Protein expression levels of FN1, ColⅠ, α-SMA, PDGFR-β, NKD2, DVL2, and β-catenin in renal tissue were decreased, with more pronounced effects observed in the Niaoduqing, medium-dose, and high-dose Shenshu Fujian decoction groups (P<0.05, P<0.01). ConclusionShenshu Fujian decoction improves renal function, reduces inflammation, and reverses renal fibrosis in CRF rats, possibly by downregulating the expression of PDGF/NKD2/Wnt signaling pathway-related proteins.
4.Comparison of Effect of Hirudo, Notoginseng Radix et Rhizoma, and Their Combinations on Renal Fibrosis in Rats with Chronic Renal Failure
Munan WANG ; Xuekuan HUANG ; Hongyu LUO ; Ke XU ; Xin CHEN ; Ling ZUO ; Qianqian SONG ; Peng DENG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(2):110-117
ObjectiveTo observe the effects of Hirudo, Notoginseng Radix et Rhizoma, and drug pair on renal pathological morphology and protein phosphatase 2A (PP2A)/adenylate activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) signal pathway in rats with chronic renal failure (CRF). MethodThe 55 male SD rats were randomly divided into a normal group (n=11) and a modeling group (n=44). The normal group was fed conventionally, and the modeling group was given 0.25 g·kg-1·d-1 adenine by gavage for 28 days to replicate the CRF model. After successful modeling, rats were randomly divided into model group, Hirudo group (3 g·kg-1·d-1), Notoginseng Radix et Rhizoma group (3 g·kg-1·d-1), and Hirudo + Notoginseng Radix et Rhizoma group (3 g·kg-1·d-1), with 9 rats in each group. The normal group and model group were given a constant volume of normal saline by intragastric administration for 30 days. At the end of the experiment, the levels of serum creatinine (SCr) and urea nitrogen (BUN) in all groups were measured. The renal pathological morphology changes were observed by hematoxylin-eosin (HE) staining, Masson staining, and electron microscopy. The mRNA expressions of PP2A, AMPK, and mTOR were detected by Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR). The protein expression levels of PP2A, AMPK, phosphorylation(p)-AMPK, mTOR, and p-mTOR in renal tissue were detected by Western blot. ResultCompared with the normal group, the renal pathological structure changes were obvious, and the levels of SCr and BUN were significantly increased. The mRNA expression of PP2A, protein expression of PP2A, and p-mTOR/mTOR expression were significantly increased, and the p-AMPK/AMPK was significantly decreased in the model group (P<0.05). Compared with the model group, the renal pathological morphology changes were significantly improved, and the levels of SCr and BUN were significantly decreased. The mRNA expression of PP2A, protein expression of PP2A, and p-mTOR/mTOR expression in the renal tissue were significantly decreased, and the p-AMPK/AMPK was significantly increased (P<0.05) in all groups after drug intervention. In addition, the effect in the Hirudo+Notoginseng Radix et Rhizoma group was better. The mRNA expression levels of AMPK and mTOR in the renal tissue were not significantly different among the normal group, model group, and other groups. ConclusionThe efficacy of Hirudo and Notoginseng Radix et Rhizoma pairs in improving renal fibrosis in rats with CRF is significantly better than that of the single drug, and its improvement on renal fibrosis in rats with CRF may be related to the regulation of PP2A/AMPK/mTOR signaling pathway.
5.Analysis of Knowledge Map of Acupoint Catgut Embedd Therapy for Pain Based on Citespace
Hong-Fen YI ; Xin-Yu CHEN ; Han PENG ; Qian LI ; Tao-Hong LUO ; Qing-Long XUE ; Hao-Lin ZHANG ; Jian ZHUANG ; Mai-Lan LIU
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(1):154-160
Objective To comprehensively excavate and analyze the research status,research hotspots and future trends of the literature related to the field of acupoint catgut embedding therapy for pain treatment in the CNKI database.Methods We searched the CNKI database from its establishment to June 2022,and scientifically analyzed the authors,keywords,and institutions of the included literature of acupoint catgut embedding therapy for pain treatment through specific algorithms of Citespace to generate a visual knowledge map.Results A total of 319 documents were included for statistical analysis,the number of publications in the field of acupoint catgut embedding therapy for the treatment of pain was generally on the rise,the number of publications by various authors was on the low side,and there was a lack of co-operation between the research teams,with the main institutions being the Guang'anmen Hospital,Chinese Academy of Chinese Medical Sciences,Affiliated Hospital of Youjiang Medical Universities of Nationalities and the Guangzhou University of Chinese Medicine,forming a 10-keyword clustering,and the hotspots of diseases under study were mainly mixed haemorrhoids,postoperative pain,low back and leg pain and dysmenorrhoea,etc..The main interventions were pure acupoint catgut embedding therapy and the combination of acupoint catgut embedding therapy and other acupuncture therapies,and the main research method was clinical research.Conclusion Acupoint catgut embedding therapy for the treatment of pain has a good development prospect,the future needs to deepen the clinical research,strengthen the mechanism research,pay attention to the joint use of acupoint catgut embedding therapy and other traditional Chinese medicine methods,and pay attention to the research of different thread materials.
6.Role and mechanism of interleukin-8 in bone regeneration
Peng LUO ; Yi WANG ; Ansu WANG ; Yi DANG ; Yaping MA ; Yi ZHANG ; Xin WANG
Chinese Journal of Tissue Engineering Research 2024;28(24):3910-3914
BACKGROUND:Interleukin-8 is an important cytokine that has been found to play an important role in bone regeneration through multiple pathways. OBJECTIVE:To comprehensively review the action mechanism of interleukin-8 effects on bone regeneration to provide ideas for the following studies on interleukin-8. METHODS:By searching the China National Knowledge Infrastructure database for articles published from January 1999 to February 2023 and PubMed database for articles published from January 1985 to February 2023 reporting the role of interleukin-8 in bone-associated cells and vascularisation.Chinese and English search terms were"interleukin-8,bone repair,bone metabolism,mesenchymal stem cells,osteoblasts,osteoclasts,vascularization".The initial review yielded 508 articles in English and Chinese,and a total of 51 articles were included for review and analysis according to the inclusion and exclusion criteria. RESULTS AND CONCLUSION:According to the existing research,interleukin-8 can promote bone cell regeneration and assist bone healing through multiple pathways,which is mainly divided into three aspects:(1)Promote the proliferation and differentiation of bone cells such as mesenchymal stem cells and osteoblasts,and promote the development of cells in the direction of promoting bone healing;(2)interleukin-8 can promote angiogenesis and provide sufficient nutrition and oxygen for bone tissue,thus further improving the quality and stability of bone healing.(3)The appearance of interleukin-8 facilitates the expression of hypoxia-inducible factor-1α,vascular endothelial growth factor,and matrix metalloproteinase,which can create a microenvironment conducive to bone regeneration,thus promoting the regeneration and repair of bone tissue.In summary,interleukin-8 plays an important role in bone healing by promoting osteoblast proliferation and differentiation,facilitating angiogenesis and improving the mechanical properties of bone regeneration,as well as influencing bone metabolism through osteoclasts,mesenchymal stem cells,and other action sites.
7.The effect of Ba Duan Jin on the balance of community-dwelling older adults: a cluster randomized control trial
Leilei DUAN ; Yubin ZHAO ; Yuliang ER ; Pengpeng YE ; Wei WANG ; Xin GAO ; Xiao DENG ; Ye JIN ; Yuan WANG ; Cuirong JI ; Xinyan MA ; Cong GAO ; Yuhong ZHAO ; Suqiu ZHU ; Shuzhen SU ; Xin'e GUO ; Juanjuan PENG ; Yan YU ; Chen YANG ; Yaya SU ; Ming ZHAO ; Lihua GUO ; Yiping WU ; Yangnu LUO ; Ruilin MENG ; Haofeng XU ; Huazhang LIU ; Huihong RUAN ; Bo XIE ; Huimin ZHANG ; Yuhua LIAO ; Yan CHEN ; Linhong WANG
Chinese Journal of Epidemiology 2024;45(2):250-256
Objective:To assess the effectiveness of a 6-month Ba Duan Jin exercise program in improving the balance of community-dwelling older adults.Methods:A two arms, parallel-group, cluster randomized controlled trial was conducted in 1 028 community residents aged 60-80 years in 40 communities in 5 provinces of China. Participants in the intervention group (20 communities, 523 people) received Ba Duan Jin exercise 5 days/week, 1 hour/day for 6 months, and three times of falls prevention health education, and the control group (20 communities, 505 people) received falls prevention health education same as the intervention group. The Berg balance scale (BBS) score was the leading outcome indicator, and the secondary outcome indicators included the length of time of standing on one foot (with eyes open and closed), standing in a tandem stance (with eyes open and closed), the closed circle test, and the timed up to test.Results:A total of 1 028 participants were included in the final analysis, including 731 women (71.11%) and 297 men (28.89%), and the age was (69.87±5.67) years. After the 3-month intervention, compared with the baseline data, the BBS score of the intervention group was significantly higher than the control group by 3.05 (95% CI: 2.23-3.88) points ( P<0.001). After the 6-month intervention, compared with the baseline data, the BBS score of the intervention group was significantly higher than the control group by 4.70 (95% CI: 4.03-5.37) points ( P<0.001). Ba Duan Jin showed significant improvement ( P<0.05) in all secondary outcomes after 6 months of exercise in the intervention group compared with the control group. Conclusions:This study showed that Ba Duan Jin exercise can improve balance in community-dwelling older adults aged 60-80. The longer the exercise time, the better the improvement.
8.Variation rules of main secondary metabolites in Hedysari Radix before and after rubbing strip
Xu-Dong LUO ; Xin-Rong LI ; Cheng-Yi LI ; Peng QI ; Ting-Ting LIANG ; Shu-Bin LIU ; Zheng-Ze QIANG ; Jun-Gang HE ; Xu LI ; Xiao-Cheng WEI ; Xiao-Li FENG ; Ming-Wei WANG
Chinese Traditional Patent Medicine 2024;46(3):747-754
AIM To investigate the variation rules of main secondary metabolites in Hedysari Radix before and after rubbing strip.METHODS UPLC-MS/MS was adopted in the content determination of formononetin,ononin,calycosin,calycosin-7-glucoside,medicarpin,genistein,luteolin,liquiritigenin,isoliquiritigenin,vanillic acid,ferulic acid,γ-aminobutyric acid,adenosine and betaine,after which cluster analysis,principal component analysis and orthogonal partial least squares discriminant analysis were used for chemical pattern recognition to explore differential components.RESULTS After rubbing strip,formononetin,calycosin,liquiritigenin and γ-aminobutynic acid demonstrated increased contents,along with decreased contents of ononin,calycosin-7-glucoside and vanillic acid.The samples with and without rubbing strip were clustered into two types,calycosin-7-glucoside,formononetin,γ-aminobutynic acid,vanillic acid,calycosin-7-glucoside and formononetin were differential components.CONCLUSION This experiment clarifies the differences of chemical constituents in Hedysari Radix before and after rubbing strip,which can provide a reference for the research on rubbing strip mechanism of other medicinal materials.
9.Syringic Acid Improves Cholestatic Liver Disease by Regulating Bile Acid Metabolism and Intestinal Barrier
Xin LUO ; Peng CHENG ; Yin LU ; Zhonghong WEI
Journal of Nanjing University of Traditional Chinese Medicine 2024;40(4):350-358
OBJECTIVE To explore the regulatory effect of syringic acid in cholestatic mice based on bile acid metabolism and intestinal barrier.METHODS Twenty mice were randomly divided into control group,model group and low and high dose of syringic acid(70,140 mg·kg-1)groups.Intrahepatic cholestasis was induced by intraperitoneal injection of α-naphthalene isothiocyanate af-ter 2 h of administration on the fifth day.After the last dose,the changes of body weight and liver mass of mice were recorded.Liver function indexes in serum and histopathology were detected,qPCR verified the expression of tight junction proteins Zonula Occludens Protein 1(ZO-1),Occludin and Claudin-5 in mouse colon tissues,the changes of metabolites in serum were analyzed by using nontar-geted metabolomics,and the changes of total bile acids in liver and feces were detected.RESULTS Syringic acid could significantly reduce the serum alanine aminotransferase(ALT),aspartate transaminase(AST),alkaline phosphatase(ALP)activity,total biliru-bin(TBIL)and direct bilirubin(DBIL)levels(P<0.05,P<0.01)in the model group mice,and reduce liver damage and necrosis.Syringic acid reduced lymphocyte infiltration in the colon of mice in the model group and restored crypt morphology,while the high-dose syringic acid group significantly increased the mRNA expression levels of ZO-1,Occludin,and Claudin-5 in the colon(P<0.05).The high-dose intervention of syringic acid significantly upregulated 11 metabolites and 29 metabolites,and the metabolites mainly involved the biosynthesis of secondary metabolites,secondary bile acid biosynthesis and bile secretion pathways.Syringic acid reduced the content of total bile acids in the liver and increased the excretion of total bile acids in feces(P<0.05,P<0.01).CON-CLUSION Syringic acid can significantly improve the phenotype of cholestasis in cholestatic mice,improve the damage of intestinal barrier,and promote the metabolism of bile acids in cholestatic mice,which may be the key pathway for syringic acid to improve chole-stasis.
10.Preparation of a Fluorescent Nanosensor Based on NaYF4∶Yb3+,Er3+@SiO2 for Detection of Hydrogen Peroxide in Milk
Kong-Hao PENG ; Wei PENG ; An-Qi BAI ; Ling-Nan WANG ; Wei-Xin ZHAO ; Yue WU ; Wen GUO ; Shu-Rong LI ; Li-Xia LUO ; Pei-Jun MENG
Chinese Journal of Analytical Chemistry 2024;52(5):685-694
The rare-earth-elements-doped upconversion nanoparticles NaYF4:Yb3+,Er3+were synthesized by solvothermal method,and NaYF4:Yb3+,Er3+@SiO2 were prepared by coating SiO2 on the surface of NaYF4:Yb3+,Er3+by inverse microemulsion method in this work.Based on the fluorescence quenching principle between NaYF4∶Yb3+,Er3+@SiO2 and SQA-Fe3+,a NaYF4∶Yb3+,Er3+@SiO2-SQA-Fe3+fluorescence nanosensor was constructed for detection of trace hydrogen peroxide(H2O2).Under optimal conditions,the linear range of this method for detecting H2O2 was 1.8?84.0 μmol/L,with detection limit(3σ)of 0.47 μmol/L.The recoveries of H2O2 spiked in milk were 98.4%?99.7%.This method could be used for detection of H2O2 residue in milk samples,with advantages such as low detection limit,good stability and strong anti-interference ability.

Result Analysis
Print
Save
E-mail