1.Targeting effect and anti-tumor mechanism of folic acid-modified crebanine nanoparticles combined with ultra-sound irradiation on M109 cells in vitro and in vivo
Hailiang ZHANG ; Xiaoyu ZHAO ; Jiahua MEI ; Rui PAN ; Junze TANG ; Kun YU ; Rui XUE ; Xiaofei LI ; Xin CHENG
China Pharmacy 2025;36(14):1730-1736
OBJECTIVE To investigate the targeting effect of folic acid-modified crebanine nanoparticles (FA-Cre@PEG- PLGA NPs, hereinafter referred to as “NPs”) combined with ultrasound irradiation on M109 cells in vitro and in vivo after administration, and explore the anti-tumor mechanism. METHODS CCK-8 assay was used to detect the inhibitory effect of NPs combined with ultrasound irradiation on the proliferation of M109 cells, and the best ultrasound time was selected. Using human lung cancer A549 cells as a control, the targeting of NPs combined with ultrasound irradiation to M109 cells was evaluated by free folic acid blocking assay and cell uptake assay. The effects of NPs combined with ultrasound irradiation on the migration, invasion, apoptosis, cell cycle and reactive oxygen species (ROS) levels of M109 cells were detected by cell scratch test, Transwell chamber test and flow cytometry at 1 h after 958401536@qq.com administration; the changes of mitochondrial membrane potential (MMP) were observed by fluorescence inverted microscope. A mouse subcutaneous tumor model of M109 cells was constructed, and the in vivo tumor targeting of NPs combined with ultrasound irradiation was investigated by small animal in vivo imaging technology. RESULTS NPs combined with ultrasound irradiation could significantly inhibit the proliferation of M109 cells, and the optimal ultrasound time was 1 h after administration. The free folic acid could antagonize the inhibitory effect of NPs on the proliferation of M109 cells, and combined with ultrasound irradiation could partially reverse this antagonism. Compared with A549 cells, the uptake rate of NPs in M109 cells was significantly higher (P<0.01), and ultrasound irradiation could promote cellular uptake. NPs combined with ultrasound irradiation could inhibit the migration and invasion of M109 cells and block the cell cycle in the G0/G1 and G2/M phases. Compared with control group, the apoptosis rate of M109 cells and ROS level were increased significantly (P<0.01), while the MMP decreased significantly (P<0.01) in the different concentration (100, 200, 300 μg/mL) groups of M109 cells. Compared with the mice in non-ultrasound group, the fluorescence intensity and tumor-targeting index of the tumor site in the 0 h ultrasound group were significantly enhanced (P<0.05 or P<0.01). CONCLUSIONS NPs combined with ultrasound irradiation have a strong targeting effect on M109 cells in vitro and in vivo, the anti-tumor mechanism includes inhibiting cell migration and invasion, blocking cell cycle, and inducing apoptosis.
2.Identification and anti-inflammatory activity of chemical constituents and a pair of new monoterpenoid enantiomers from the fruits of Litsea cubeba
Mei-lin LU ; Wan-feng HUANG ; Yu-ming HE ; Bao-lin WANG ; Fu-hong YUAN ; Ting ZHANG ; Qi-ming PAN ; Xin-ya XU ; Jia HE ; Shan HAN ; Qin-qin WANG ; Shi-lin YANG ; Hong-wei GAO
Acta Pharmaceutica Sinica 2024;59(5):1348-1356
Eighteen compounds were isolated from the methanol extract of the fruits of
3.Research progress on the intervention of traditional Chinese medicine in IBS-D based on the"SCFAs-intes-tinal barrier"pathway
Xin DOU ; Changhui HE ; Xiao MEI ; Haidi PAN ; Yuanxin MA ; Wei WANG
The Journal of Practical Medicine 2024;40(15):2177-2182
Diarrhea-predominant irritable bowel syndrome(IBS-D)is a clinically common functional gastrointestinal disease,the"SCFAs-intestinal barrier"pathway plays an important role in the pathogenesis of IBS-D.Traditional Chinese medicine monomers/compounds or Chinese medicine compound can treat IBS-D by regulating the"SCFAs-intestinal barrier"through multiple pathways and multiple targets.This article takes the relationship between SCFAs and the four major intestinal barriers,as well as the mediating effect of IBS-D,as the starting point to systematically review and sort out the relevant literature on the targeted regulation of"SCFAs-intestinal barrier"in the treatment of IBS-D by Traditional Chinese medicine monomers/compounds and Chinese medicine compound;explores the theoretical basis of IBS-D caused by"SCFAs-intestinal barrier"from the perspective of"Large intes-tine dominating fluid",in order to provid ideas for Traditional Chinese medicine to establish a precision treatment system with Chinese medicine characteristics.
4.Autosomal recessive polycystic kidney disease in a girl
Xin-Yu XU ; Qing-Mei ZHOU ; Yun-Fen TIAN ; Qiong ZHAO ; Han PAN ; Qian-Ting CHEN ; Yu-Mei LUO ; Zheng-Zheng GUO ; Tian-He LI ; Jing-Hui YANG
Chinese Journal of Contemporary Pediatrics 2024;26(9):954-960
A 5-year-old girl was admitted due to one episode of melena and one episode of hematemesis.Upon admission,gastroscopy revealed esophageal and gastric varices.Abdominal CT scan,MRI,and color Doppler ultrasound suggested cirrhosis,intrahepatic bile duct dilation,and bilateral kidney enlargement.Genetic testing identified compound heterozygous mutations in the PKHD1 gene:c.2264C>T(p.Pro755Leu)and c.1886T>C(p.Val629Ala).The c.2264C>T(p.Pro755Leu)mutation is a known pathogenic variant with previous reports,while c.1886T>C(p.Val629Ala)is a novel mutation predicted to have pathogenic potential according to Mutation Taster and PolyPhen2.The child was diagnosed with autosomal recessive polycystic kidney disease.In children presenting with gastrointestinal bleeding without obvious causes,particularly those with liver or kidney disease,consideration should be given to the possibility of autosomal recessive polycystic kidney disease,and genetic testing should be conducted for definitive diagnosis when necessary.
5.Therapeutic effect of vaginal lesion resection combined with uterine wall repair for cesarean scar pregnancy after cesarean section
Li-Na JIN ; Wen-Jing WENG ; Yan LIANG ; Xin-Mei PAN
Journal of Regional Anatomy and Operative Surgery 2024;33(8):693-696
Objective To explore the efficacy of vaginal lesion resection combined with uterine wall repair in the treatment of cesarean scar pregnancy(CSP)after cesarean section.Methods A total of 122 patients with CSP admitted to our hospital were selected and randomly divided into the control group(61 cases)and the observation group(61 cases).Patients in the control group were treated with uterine artery chemoembolization(UACE)combined with ultrasound-guided curettage,while patients in the observation group were treated with vaginal lesion resection combined with uterine wall repair.The perioperative index,serum beta-human chorionic gonadotropin(β-hCG)levels before surgery and 3 days,5 days,and 7 days after surgery,clinical efficacy,and complications of patients between the groups were compared.Results The operation time of patients in the observation group was significantly longer than that in the control group(P<0.05),and the amount of intraoperative blood loss,hospitalization cost,vaginal bleeding time,time to menstruation recovery,mass disappearance time,β-hCG normalizing time,and hospitalization time of patients in the observation group were significantly less/shorter than those in the control group(P<0.05).The serum β-hCG levels of patients 3 days,5 days and 7 days after surgery in both groups were lower compared with those before surgery,and the observation group was lower than the control group,with statistically significant differences(P<0.05).The total effective rate in the observation group was 96.72%,significantly higher than that of 85.25%in the control group(P<0.05).The incidence of vaginal bleeding and surrounding tissue injury in the observation group was significantly lower than that in the control group(P<0.05).Conclusion The combination of vaginal lesion resection and uterine wall repair for the treatment of CSP can reduce the amount of intraoperative blood loss,reduce the serum β-hCG levels and the incidence of complications,improve clinical treatment efficacy,and promote recovery of patients.
6.Proteomics reveals the protective mechanism of salvianolate injection on early hyperacute myocardial infarction
Ao-ao WANG ; Lei LI ; Zi-yan WANG ; Ce CAO ; Ying LI ; Zi-xin LIU ; Ling-mei LI ; Yue SHI ; Yan-lei MA ; Ying-hong PAN ; Jian-xun LIU
Acta Pharmaceutica Sinica 2023;58(5):1188-1195
The hyperacute stage of myocardial infarction refers to a period of time within 30 minutes after the occurrence of myocardial infarction, when the symptoms are not obvious and the diagnosis is difficult, and the related pathophysiological mechanism has received less attention. In this study, proteomics was used to investigate the pathological changes in the early hyperacute phase of myocardial infarction, aiming to provide experimental evidence for pathological mechanism of myocardial infarction hyperacute stage. Meanwhile, the intervention effect and related mechanism of salvianolate injection were discussed based on heat shock protein B6 (HSPB6), aiming to benefit the clinical rational use of salvianolate injection. The protein expression changes before and after myocardial infarction model establishment were detected by label-free proteomics
7.Inhibition of glutaminolysis alleviates myocardial fibrosis induced by angiotensin II.
Pan-Pan WANG ; Hao-Miao BAI ; Si-Yu HE ; Zi-Qi XIA ; Mei-Jie LIU ; Jiong AN ; Jia-Heng ZHOU ; Chen-Han LI ; Wei ZHANG ; Xing ZHANG ; Xin-Pei WANG ; Jia LI
Acta Physiologica Sinica 2023;75(2):179-187
The present study was aimed to investigate the role and mechanism of glutaminolysis of cardiac fibroblasts (CFs) in hypertension-induced myocardial fibrosis. C57BL/6J mice were administered with a chronic infusion of angiotensin II (Ang II, 1.6 mg/kg per d) with a micro-osmotic pump to induce myocardial fibrosis. Masson staining was used to evaluate myocardial fibrosis. The mice were intraperitoneally injected with BPTES (12.5 mg/kg), a glutaminase 1 (GLS1)-specific inhibitor, to inhibit glutaminolysis simultaneously. Immunohistochemistry and Western blot were used to detect protein expression levels of GLS1, Collagen I and Collagen III in cardiac tissue. Neonatal Sprague-Dawley (SD) rat CFs were treated with 4 mmol/L glutamine (Gln) or BPTES (5 μmol/L) with or without Ang II (0.4 μmol/L) stimulation. The CFs were also treated with 2 mmol/L α-ketoglutarate (α-KG) under the stimulation of Ang II and BPTES. Wound healing test and CCK-8 were used to detect CFs migration and proliferation respectively. RT-qPCR and Western blot were used to detect mRNA and protein expression levels of GLS1, Collagen I and Collagen III. The results showed that blood pressure, heart weight and myocardial fibrosis were increased in Ang II-treated mice, and GLS1 expression in cardiac tissue was also significantly up-regulated. Gln significantly promoted the proliferation, migration, mRNA and protein expression of GLS1, Collagen I and Collagen III in the CFs with or without Ang II stimulation, whereas BPTES significantly decreased the above indices in the CFs. α-KG supplementation reversed the inhibitory effect of BPTES on the CFs under Ang II stimulation. Furthermore, in vivo intraperitoneal injection of BPTES alleviated cardiac fibrosis of Ang II-treated mice. In conclusion, glutaminolysis plays an important role in the process of cardiac fibrosis induced by Ang II. Targeted inhibition of glutaminolysis may be a new strategy for the treatment of myocardial fibrosis.
Rats
;
Mice
;
Animals
;
Rats, Sprague-Dawley
;
Angiotensin II/pharmacology*
;
Fibroblasts
;
Mice, Inbred C57BL
;
Fibrosis
;
Collagen/pharmacology*
;
Collagen Type I/metabolism*
;
RNA, Messenger/metabolism*
;
Myocardium/pathology*
8.Schisandrin B Improves the Hypothermic Preservation of Celsior Solution in Human Umbilical Cord Mesenchymal Stem Cells
Ying ZHANG ; Peng WANG ; Mei-xian JIN ; Ying-qi ZHOU ; Liang YE ; Xiao-juan ZHU ; Hui-fang LI ; Ming ZHOU ; Yang LI ; Shao LI ; Kang-yan LIANG ; Yi WANG ; Yi GAO ; Ming-xin PAN ; Shu-qin ZHOU ; Qing PENG
Tissue Engineering and Regenerative Medicine 2023;20(3):447-459
BACKGROUND:
Human umbilical cord mesenchymal stem cells (hUCMSCs) have emerged as promising therapy for immune and inflammatory diseases. However, how to maintain the activity and unique properties during cold storage and transportation is one of the key factors affecting the therapeutic efficiency of hUCMSCs. Schisandrin B (SchB) has many functions in cell protection as a natural medicine. In this study, we investigated the protective effects of SchB on the hypothermic preservation of hUCMSCs.
METHODS:
hUCMSCs were isolated from Wharton’s jelly. Subsequently, hUCMSCs were exposed to cold storage (4 °C) and 24-h re-warming. After that, cells viability, surface markers, immunomodulatory effects, reactive oxygen species (ROS), mitochondrial integrity, apoptosis-related and antioxidant proteins expression level were evaluated.
RESULTS:
SchB significantly alleviated the cells injury and maintained unique properties such as differentiation potential, level of surface markers and immunomodulatory effects of hUCMSCs. The protective effects of SchB on hUCMSCs after hypothermic storage seemed associated with its inhibition of apoptosis and the anti-oxidative stress effect mediated by nuclear factor erythroid 2–related factor 2 signaling.
CONCLUSION
These results demonstrate SchB could be used as an agent for hypothermic preservation of hUCMSCs.
9.Physiologically based pharmacokinetic modeling of the inhibitory effect of dapagliflozin on intestinal and renal SGLT
Yu ZHANG ; Pan-pan XIE ; Ya-mei LI ; Xue-mei HE ; Yue LIU ; Ai-xin SHI
Acta Pharmaceutica Sinica 2022;57(6):1874-1879
This study establishes and optimizes the physiologically based pharmacokinetics (PBPK) model for dapagliflozin, predicts the drug distribution into relevant tissues, and calculates the inhibitory effect on the sodium-glucose cotransporters (SGLTs) in the intestine and renal proximal tubule. Based on literature data, a PBPK model for oral administration in healthy adults was established and the predicted blood concentration-time curve characteristics, the main pharmacokinetic parameters (PK), and drug excretion in urine were compared with the published data. To verify and optimize the model and verify the accuracy of the tissue distribution and concentration predictions, a pharmacodynamics model (PD) was established. Urine glucose excretion (UGE) was simulated at the corresponding times. The characteristics of the drug-time curve predicted by the model are similar to those of the measured curve, and the ratio of the main PK parameters to the measured values is within a two-fold range; the accuracy of the established PBPK model is good. The maximal inhibition obtained with 10 mg of dapagliflozin on the duodenum and jejunum segment sodium-glucose co-transporter 1 (SGLT1s) was 1.6%-4.7%, and the inhibition rate of the sodium-glucose co-transporter 2 (SGLT2s) in the proximal tubule of the kidney was as high as 99.9%. At a dose of 10 mg, dapagliflozin delayed intestinal glucose absorption while occupying most of the sites (99.9%) of the renal sodium-glucose cotransporter 2 and inhibiting its glucose reabsorption. This physiological-pharmacokinetic model for dapagliflozin in healthy adults can provide meaningful guidance for exploring pharmacological mechanisms and potential toxicity of gliflozin by simulating drug distribution in different tissues.
10.Effect of wheat-grain moxibustion on the expression of Beclin-1/GRP78 in spinal dorsal horn in rats with cervical spondylotic radiculopathy.
Yuan-Yuan LIN ; Sheng-Yong SU ; Yi-Yang XU ; Hui-Qian CAI ; Xi ZHANG ; Mei-Xiang QIN ; Fang-Xing JIANG ; Xin-Ying LIN ; Shan-Na PAN
Chinese Acupuncture & Moxibustion 2022;42(5):533-539
OBJECTIVE:
To observe the effect of wheat-grain moxibustion at "Dazhui" (GV 14) on the expressions of Beclin-1 and GRP78 in spinal dorsal horn in rats with cervical spondylotic radiculopathy (CSR), and to explore the possible analgesic mechanism of wheat-grain moxibustion for CSR.
METHODS:
A total of 48 SD rats were randomly divided into a sham operation group, a model group, a wheat-grain moxibustion group and a wheat-grain moxibustion+3-MA group, 12 rats in each group. The CSR model was prepared by spinal cord insertion method. Three days after modeling, the rats in the model group were intraperitoneally injected with 1 mL of 0.9% sodium chloride solution; the rats in the wheat-grain moxibustion group were treated with wheat-grain moxibustion at "Dazhui" (GV 14, 6 cones per time) on the basis of the model group; the rats in the wheat-grain moxibustion+3-MA group were intraperitoneally injected with 3-MA solution and wheat-grain moxibustion at "Dazhui" (GV 14, 6 cones per time). The three groups were intervened for 7 days, once a day. The gait score and mechanical pain threshold were observed before treatment and 7 days into treatment; after the treatment, the expressions of mRNA and protein of Beclin-1 in spinal dorsal horn were detected by real-time fluorescence quantitative PCR and immunohistochemistry; the expression of GRP78 protein in spinal dorsal horn was detected by Western blot method; the autophagosomes and ultrastructure in spinal dorsal horn neurons were observed by electron microscope.
RESULTS:
After the treatment, compared with the sham operation group, in the model group, the gait score was increased and the mechanical pain threshold was decreased (P<0.01), and the expression of GRP78 protein in spinal dorsal horn was increased (P<0.01). Compared with the model group and the wheat-grain moxibustion+3-MA group, in the wheat-grain moxibustion group, the gait score was decreased and mechanical pain threshold was increased (P<0.01), and the expression of GRP78 protein in spinal dorsal horn was decreased, and the expressions of mRNA and protein of Beclin-1 were increased (P<0.01). Under electron microscope, the ultrastructure of spinal dorsal horn neurons in the wheat-grain moxibustion group was not significantly damaged, and its structure was basically close to normal, and the number of autophagosomes was more than the other three groups.
CONCLUSION
Wheat-grain moxibustion at "Dazhui" (GV 14) has analgesic effect on CSR rats. The mechanism may be related to moderately up-regulate the expression of Beclin-1, enhance autophagy and reduce endoplasmic reticulum stress.
Animals
;
Beclin-1/genetics*
;
Endoplasmic Reticulum Chaperone BiP
;
Moxibustion
;
RNA, Messenger
;
Radiculopathy/therapy*
;
Rats
;
Rats, Sprague-Dawley
;
Spinal Cord
;
Spinal Cord Dorsal Horn
;
Spondylosis
;
Triticum/genetics*

Result Analysis
Print
Save
E-mail