1.Analysis and evaluation of platelet bank establishment strategy from the perspective of donor loss
Zheng LIU ; Yamin SUN ; Xin PENG ; Yiqing KANG ; Ziqing WANG ; Jintong ZHU ; Juan DU ; Jianbin LI
Chinese Journal of Blood Transfusion 2025;38(2):238-243
[Objective] To analyze the loss rate of platelet donors and evaluate the strategies for establishing a platelet donor bank. [Methods] A total of 1 443 donors who joined the HLA and HPA gene donor bank for platelets in Henan Province from 2018 to 2020 were included in this study. Data on the total number of apheresis platelet donations, annual donation frequency, age at enrollment, donation habits (including the number of platelets donated per session and whether they had previously donated whole blood), and enrollment location were collected from the platelet donor information management system. Donor loss was determined based on the date of their last donation. The loss rates of different groups under various conditions were compared to assess the enrollment strategies. [Results] By the time the platelet bank was officially operational in 2022, 421 donors had been lost, resulting in an loss rate of 29% (421/1 443). By the end of 2023, the overall cumulative loss rate reached 52% (746/1 443). The loss rate was lower than the overall level in groups meeting any of the following conditions: total apheresis platelet donations exceeding 50, annual donation frequency of 10 or more, age at enrollment of 40 years or older, donation of more than a single therapeutic dose per session, or a history of whole blood donation two or more times. Additionally, loss rates varied across different enrollment locations, with higher enrollment numbers generally associated with higher loss rates. [Conclusion] Through a comprehensive analysis of donor loss, our center has adjusted its strategies for establishing the donor pool. These findings also provide valuable insights for other blood collection and supply institutions in building platelet donor banks.
2.Efficacy and Mechanism of Action of Ermiao Situ Decoction in Modulating JAK/STAT Pathway in Rats with Damp-heat Eczema
Kangning HAN ; Junjie HU ; Juan LI ; Min ZHANG ; Xian ZHOU ; Songlin LIU ; Xin CHEN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(9):37-47
ObjectiveUltra performance liquid chromatography-quadrupole-time of flight tandem mass spectrometry (UPLC-Q-TOF-MS/MS) coupled with network pharmacology and molecular docking was utilized to explore the efficacy and mechanism of action of Ermiao Situ decoction on rats with damp-heat eczema. MethodsA rat model of damp-heat eczema was established by artificial climate chamber intervention combined with sensitization induction by dinitrochlorobenzene (DNCB), and it was randomly divided into the normal group, the model group, the medium- and high-dose groups of Ermiao Situ decoction (3.40 g·kg-1 and 6.80 g·kg-1), and the prednisone acetate group (2.51 mg·kg-1), with eight rats in each group, totalling 46 rats, of which six rats were tested with the drug-containing serum. The chemical analysis of drug-containing serum from rats was carried out by UPLC-Q-TOF-MS/MS, combined with network pharmacology for the prediction of key components, core targets, and signaling pathways, and molecular docking experiments were performed by CB-Dock2 online website. The pharmacological effects of Ermiao Situ decoction in the treatment of damp-heat eczema were investigated by epitaxial indexes combined with the pathologic tissue staining method. The serum levels of gastrin (GAS), interleukin-4 (IL-4), and interleukin-13 (IL-13) were measured by enzyme-linked immunosorbent assay (ELISA). Interleukin-6 (IL-6), Janus kinase 1 (JAK1), phosphorylated (p)-JAK1, signal transduction and activation of transcription factor 3 (STAT3), and p-STAT3 protein expression level was determined by Western bolt. ResultsA total of 19 active ingredients were detected in drug-containing serum samples of rats, which were predicted to act on 198 targets for the treatment of damp-heat eczema, among which the key ingredients included rhodopsin, huangpai alkaloids, and quercetin, and the main core targets included STAT3, tumor necrosis factor (TNF), and IL-6, which were mainly involved in the cancer signaling pathway, phosphatidylinositol 3-kinase (PI3K)/protein kinase (Akt) signaling pathway, T helper 17 (Th17) cell differentiation signaling pathway, and JAK/STAT signaling pathway. The molecular docking results suggested that the key components had strong binding activities with the core targets IL-6, JAK1, and STAT3 in the JAK/STAT signaling pathway. The results of animal experiments showed that compared with those in the normal group, rats in the model group were depressed. They had loose hair, loose stools, epidermal oozing, vesiculation, and generation of thick scabs in the form of scales, decreased body weight, increased anus temperature and water intake, and increased indexes of the spleen, thymus gland, and stomach (P<0.05, P<0.01), and the lesion tissue could be seen to be hyperkeratotic, with the aggregation of inflammatory cells and nonsignificant separation of epidermis and dermis. The gastric mucosa was thinned, deficient, and structurally disorganized, and obvious inflammatory cell aggregation was seen. The levels of GAS, IL-4, and IL-13 in serum were significantly reduced (P<0.05, P<0.01), and the protein expression levels of IL-6, JAK1, p-JAK1, and p-STAT3 in the lesion tissue were significantly increased (P<0.05, P<0.01). Compared with those in the model group, rats in each administration group had stable mental states, formed feces, a clean perianal area, and basically normal epidermis. Only a small amount of scaly scabs existed, and the rats had body weight increased, with decreased anal temperature and water intake, as well as decreased spleen, thymus, and gastric indexes (P<0.05, P<0.01). Epidermal thickness was decreased, and epidermal and dermal separation boundaries were obvious, but hyperkeratotic and accumulation of inflammatory cells could still be seen. The thickness of gastric mucosa increased, and the structure was restored to varying degrees. The levels of GAS, IL-4, and IL-13 content in the serum of rats were increased to varying degrees, and the protein expression levels of IL-6, JAK1, p-JAK1, and p-STAT3 in the dermal lesion tissue were significantly decreased (P<0.05, P<0.01). ConclusionErmiao Situ decoction may exert therapeutic effects on rats with damp-heat eczema by modulating the JAK/STAT signaling pathway.
3.Exploration of the antidepressant machanism of Shugan hewei tang based on metabolomics of PFC-NAc-VTA neural circuit
Xinyue QU ; Junjie HU ; Juan LI ; Min ZHANG ; Xian ZHOU ; Songlin LIU ; Xin CHEN
China Pharmacy 2025;36(10):1172-1178
OBJECTIVE To investigate the antidepressant mechanism of Shugan hewei tang (SGHWT) based on the metabolomics of prefrontal cortex (PFC)-nucleus accumbens (NAc)-ventral tegmental area (VTA) neural circuit. METHODS Male SD rats were randomly divided into blank group, model group, SGHWT low-, medium- and high-dose groups [3.67, 7.34, 14.68 g/(kg·d), by raw material], and fluoxetine group [1.58 mg/(kg·d), positive control], with 12 rats in each group. Except for the blank group, the depression model was established by chronic unpredictable mild stress combined with individual cage housing in the remaining groups, and the corresponding drug solution or normal saline was administered via gavage during modeling, once a day, for 6 consecutive weeks. After the last administration, the body weight, sucrose preference rate, total moving distance, frequency into the center and immobility time of rats in each group were detected. Samples of PFC, NAc and VTA areas of rats in the blank group, model group, SGHWT medium-dose group and fluoxetine positive control groups were collected,and their histomorphological features were observed, and non-targeted metabolomics analysis (except for fluoxetine group)were performed and validated. RESULTS Compared with model group, the cytolysis, structural damage and other pathological damages in three brain regions of rats were significantly alleviated in each drug group, while their body weight, sucrose preference rate, total moving distance and frequency into the center were all significantly higher or longer (P<0.05), and immobility time was significantly shorter (P<0.05). The results of non-targeted metabolomics showed that a total of 78 endogenous differential metabolites were identified, with 40, 35 and 24 in the PFC, NAc and VTA regions respectively, mainly involved in amino acid, lipid and sphingolipid metabolism. The results of metabolic pathway enrichment analysis showed that SGHWT affected the neural circuits of depressed rats by regulating sphingolipid metabolism, alanine, aspartic acid and glutamic acid metabolism, saturated fatty acid biosynthesis, among which alanine, aspartic acid and glutamic acid metabolism was predominantly involved. Validation experiments showed that SGHWT significantly increased the phosphorylation levels of protein kinase B (Akt) and mammalian target of rapamycin (mTOR), and decreased the protein expression of N-methyl-D-aspartic acid receptor 1 (NMDAR1) in the NAc region of rats. CONCLUSIONS SGHWT significantly improves the depression-like behavior and attenuates pathological damage of PFC-NAc-VTA neural circuit of model rats, the mechanism of which is associated with inhibiting NMDAR1 expression and activating the Akt/mTOR signaling pathway.
4.The Regulatory Mechanisms of Dopamine Homeostasis in Behavioral Functions Under Microgravity
Xin YANG ; Ke LI ; Ran LIU ; Xu-Dong ZHAO ; Hua-Lin WANG ; Lan-Qun MAO ; Li-Juan HOU
Progress in Biochemistry and Biophysics 2025;52(8):2087-2102
As China accelerates its efforts in deep space exploration and long-duration space missions, including the operationalization of the Tiangong Space Station and the development of manned lunar missions, safeguarding astronauts’ physiological and cognitive functions under extreme space conditions becomes a pressing scientific imperative. Among the multifactorial stressors of spaceflight, microgravity emerges as a particularly potent disruptor of neurobehavioral homeostasis. Dopamine (DA) plays a central role in regulating behavior under space microgravity by influencing reward processing, motivation, executive function and sensorimotor integration. Changes in gravity disrupt dopaminergic signaling at multiple levels, leading to impairments in motor coordination, cognitive flexibility, and emotional stability. Microgravity exposure induces a cascade of neurobiological changes that challenge dopaminergic stability at multiple levels: from the transcriptional regulation of DA synthesis enzymes and the excitability of DA neurons, to receptor distribution dynamics and the efficiency of downstream signaling pathways. These changes involve downregulation of tyrosine hydroxylase in the substantia nigra, reduced phosphorylation of DA receptors, and alterations in vesicular monoamine transporter expression, all of which compromise synaptic DA availability. Experimental findings from space analog studies and simulated microgravity models suggest that gravitational unloading alters striatal and mesocorticolimbic DA circuitry, resulting in diminished motor coordination, impaired vestibular compensation, and decreased cognitive flexibility. These alterations not only compromise astronauts’ operational performance but also elevate the risk of mood disturbances and motivational deficits during prolonged missions. The review systematically synthesizes current findings across multiple domains: molecular neurobiology, behavioral neuroscience, and gravitational physiology. It highlights that maintaining DA homeostasis is pivotal in preserving neuroplasticity, particularly within brain regions critical to adaptation, such as the basal ganglia, prefrontal cortex, and cerebellum. The paper also discusses the dual-edged nature of DA plasticity: while adaptive remodeling of synapses and receptor sensitivity can serve as compensatory mechanisms under stress, chronic dopaminergic imbalance may lead to maladaptive outcomes, such as cognitive rigidity and motor dysregulation. Furthermore, we propose a conceptual framework that integrates homeostatic neuroregulation with the demands of space environmental adaptation. By drawing from interdisciplinary research, the review underscores the potential of multiple intervention strategies including pharmacological treatment, nutritional support, neural stimulation techniques, and most importantly, structured physical exercise. Recent rodent studies demonstrate that treadmill exercise upregulates DA transporter expression in the dorsal striatum, enhances tyrosine hydroxylase activity, and increases DA release during cognitive tasks, indicating both protective and restorative effects on dopaminergic networks. Thus, exercise is highlighted as a key approach because of its sustained effects on DA production, receptor function, and brain plasticity, making it a strong candidate for developing effective measures to support astronauts in maintaining cognitive and emotional stability during space missions. In conclusion, the paper not only underscores the centrality of DA homeostasis in space neuroscience but also reflects the authors’ broader academic viewpoint: understanding the neurochemical substrates of behavior under microgravity is fundamental to both space health and terrestrial neuroscience. By bridging basic neurobiology with applied space medicine, this work contributes to the emerging field of gravitational neurobiology and provides a foundation for future research into individualized performance optimization in extreme environments.
5.Effects of Conbercept on different optical coherence tomography biomarkers in patients with retinal vein occlusion-related macular edema
Haiyue YU ; Juan TENG ; Zeying DONG ; Lili ZHANG ; Huixian CUI ; Chang LIU ; Guang ZHU ; Xin LI
International Eye Science 2025;25(10):1656-1661
AIM: To investigate the effects of Conbercept on various optical coherence tomography(OCT)biomarkers in patients with retinal vein occlusion-related macular edema(RVO-ME), and to analyze the correlation of these biomarker changes with visual prognosis.METHODS: Retrospective study. A total of 57 patients(57 eyes)with RVO-ME, including 25 patients(25 eyes)with central retinal vein occlusion(CRVO)and 32 patients(32 eyes)with branch retinal vein occlusion(BRVO), were enrolled in this study. All the patients received intravitreal injection of conbercept once a month, three times in total. The preoperative and postoperative best-corrected visual acuity(BCVA), and changes in OCT biomarkers, including central macular thickness(CMT), the length of disorganization of the retinal inner layers(DRIL), the number of hyperreflective dots(HRD), the area of intraretinal fluid(IRF), the area of subretinal fluid(SRF), and the length of ellipsoid zone(EZ)disruption were compared. Furthermore, the relationship of these changes with BCVA was analyzed.RESULTS:Compared with the baseline, at 3 mo post-treatment, BCVA(LogMAR)was improved, CMT was decreased, the length of DRIL was shortened, the number of HRD was reduced, the area of IRF was decreased, the area of SRF was reduced, and the length of EZ disruption was shortened(all P<0.05). Spearman correlation analysis showed that there was no correlation between the changes in CMT, the length of DRIL, the number of HRD, the area of IRF, the area of SRF and the change in BCVA before and after treatment(P>0.05). However, the change in the length of EZ disruption was positively correlated with the change in BCVA(rs=0.34, P=0.011), and the R2 value of the fitting curve between the change in the length of EZ disruption and the change in BCVA was 0.113(P=0.011). When comparing the pre- and post-treatment changes in BCVA, the length of DRIL, the number of HRD, the area of IRF, the area of SRF, and the length of EZ disruption between patients in the CRVO group and BRVO group, no significant differences were observed(all P>0.05). In contrast, a significant difference was found in the change in CMT between the two groups(P=0.002).CONCLUSION:Conbercept effectively improves multiple OCT biomarkers in patients with RVO-ME. Repair of EZ disruption is a key driver of visual recovery, and its stability may serve as a novel indicator for personalized decision-making in anti-vascular endothelial growth factor therapy.
6. Mechanism and experimental validation of Zukamu granules in treatment of bronchial asthma based on network pharmacology and molecular docking
Yan-Min HOU ; Li-Juan ZHANG ; Yu-Yao LI ; Wen-Xin ZHOU ; Hang-Yu WANG ; Jin-Hui WANG ; Ke ZHANG ; Mei XU ; Dong LIU ; Jin-Hui WANG
Chinese Pharmacological Bulletin 2024;40(2):363-371
Aim To anticipate the mechanism of zuka- mu granules (ZKMG) in the treatment of bronchial asthma, and to confirm the projected outcomes through in vivo tests via using network pharmacology and molecular docking technology. Methods The database was examined for ZKMG targets, active substances, and prospective targets for bronchial asthma. The protein protein interaction network diagram (PPI) and the medication component target network were created using ZKMG and the intersection targets of bronchial asthma. The Kyoto Encyclopedia of Genes and Genomics (KEGG) and gene ontology (GO) were used for enrichment analysis, and network pharmacology findings were used for molecular docking, ovalbumin (OVA) intraperitoneal injection was used to create a bronchial asthma model, and in vivo tests were used to confirm how ZKMG affected bronchial asthma. Results There were 176 key targets for ZKMG's treatment of bronchial asthma, most of which involved biological processes like signal transduction, negative regulation of apoptotic processes, and angiogenesis. ZKMG contained 194 potentially active components, including quercetin, kaempferol, luteolin, and other important components. Via signaling pathways such TNF, vascular endothelial growth factor A (VEGFA), cancer pathway, and MAPK, they had therapeutic effects on bronchial asthma. Conclusion Key components had strong binding activity with appropriate targets, according to molecular docking data. In vivo tests showed that ZKMG could reduce p-p38, p-ERKl/2, and p-I
7.Analysis of the mechanism of phellodendron amurense polysaccharide in the treatment of liver injury based on network pharmacology and in vivo experiments
Juan XUE ; Xin YANG ; Gongrou MO ; Longjiang LIU ; Biao CHEN ; Huifang CHAI
Acta Universitatis Medicinalis Anhui 2024;59(2):267-274
Objective To analyze the effect and molecular mechanism of phellodendron amurense in the treatment of liver injury based on network pharmacology,and to verify the relevant prediction targets and the protective effect of phellodendron amurense extract-Phellodendron amurense polysaccharide on immune liver injury through mice.Methods TCMSP and Swiss target prediction databases were used to retrieve and screen phellodendron amurenses active components and action targets,and then obtain disease-related targets on GeneCards and OMIM websites,and take compounds and disease intersection targets for protein interaction.Analysis,GO biological function and KEGG signaling pathway enrichment analysis,followed by molecular docking of compounds and key target proteins,and finally established a mouse liver injury model induced by Daodou protein A(Con A)to explore the mechanism of phellodendron amurense extract in the treatment of liver injury.Results 37 active ingredients were screened.The key targets for their treatment were tumor necrosis factor α(TNF-α),serine/threonine protein kinase 1(AKT1),signal transduction and transcription activation factor 3(STAT3),epidermal growth factor receptor(EGFR)anditin.Enzyme 3(CASP3)and other enrichment analysis showed that phellodendron amurense might play a protective role in protecting the liver through molecular mechanisms such as positive regulation of MAPK cas-cade reaction,oxidative stress response and regulatory PI3K-Akt signaling pathway,lipid and atherosclerosis.Ani-mal experiments had found that the gastric treatment of phellodendron amurense polysaccharide could improve the activity of superoxide dismutase(SOD)and catalase(CAT)in liver tissue,reduce the levels of serum alkaline phosphatase(ALP),aspartate aminotransferase(AST)and malonaldehyde(MDA)in liver tissue,and regulate serum inflammatory factor while the expression of intercitin(IL)-6,IL-1 β,tumor necrosis factor α(TNF-α),ac-tivated the expression of transforming growth factor β1(TGF-β1),and reduced TNF-α mRNA expression in liver tissue.Conclusion Phellodendron amurense can intervene in lipid and atherosclerosis pathways by acting on tar-gets such as TNF-α,AKT1,STAT3,EGFR and CASP3 to reduce oxidative stress and inflammatory reactions and achieve liver protection.
8.Ibandronate alleviates inflammatory damage in diabetic osteoporosis rats by activating Nrf2/HO-1 signaling pathway
Xiao-Li LIU ; Qin-Fang ZHU ; Jin-Juan LI ; Li-Xin YANG
The Chinese Journal of Clinical Pharmacology 2024;40(2):230-233
Objective To investigate the potential mechanism of ibandronate sodium(IB)in alleviating inflammatory damage in diabetic osteoporosis rats by activating the nuclear transcription factor erythro 2-associated factor 2(Nrf2)/heme oxygenase-1(HO-1)signaling pathway.Methods Intraperitoneal injection of streptozotocin at several low doess was used to induce rat model of diabetes mellitus,then bilateral oophorectomy were used to establish type 2 diabetic osteoporosis(T2DOP)rat model.T2DOP model rats were divided into model group,control group,combined group and experimental-L,-M,-H groups,with 8 rats in each group;another 8 diabetic rats were selected as blank group.Model group was treated with normal saline.Control group was given the same volume of solvent.Experimental-L,-M,-H groups were given 2,10 and 50 mg·kg-1 IB.Combined group was treated with 50 mg·kg-1 IB and 50 mg·kg-1 ML385.Seven groups were administered intraperitoneally once a day for 12 weeks.After 12 weeks of treatment,the bone morphologic parameters were detected by calxanthoprotein double labeling method,the expression levels of Nrf2 and HO-1 pathway protein were detected by Western blot.Results The bone morphologic parameters of experimental-M,-H groups,combined group,control group,model group and blank group were 1.74±0.32,2.94±0.58,0.98±0.32,1.01±0.24,0.98±0.42 and 2.92±0.42;the relative expression levels of Nrf2 protein were 0.99±0.09,1.47±0.12,0.51±0.06,0.52±0.06,0.52±0.05 and 1.48±0.12;the relative expression levels of HO-1 protein were 1.02±0.11,1.33±0.14,0.61±0.05,0.59±0.06,0.62±0.06 and 1.29±0.13,respectively.The above indexes in the control group were statistically different with those in the experimental-M,-H groups(all P<0.05).Conclusion IB repairs bone microstructure and alleviates inflammation in diabetic osteoporosis rats by activating the Nrf2/HO-1 signaling pathway.
9.Role of sphingosine-1-phosphate signaling in the proliferation of breast cancer BT549 cells
Juan SONG ; Ming WANG ; Xin-Yang LIU ; Hao-Tian ZHANG ; Qi ZHANG ; Xue-Mei ZHAO ; Ying LIU ; Hong-Xia CUI
The Chinese Journal of Clinical Pharmacology 2024;40(11):1578-1582
Objective To study the role of sphingosine-1-phosphate(S1P)signal on the proliferation of breast cancer BT549 cells.Methods Cells were divided into control group and experimental group,experimental group were treated with 0.1,1.0,10.0 μmol·L-1 S1P receptor agonist SEW2871 for 72 h.Control group was cultured with 0.1%fetal bovine serum.Cell proliferation was detected by methyl thiazolyl tetrazolium(MTT)assay.Cell models of overexpressing S1P receptors in BT549 were divided into three groups:blank plasmid group(LUC),wild type S1P receptor overexpression group(WT),S1P receptor phosphorylation site mutation overexpression group(MUT);the proliferation ratio was detected by MTT,the number of cell clones was counted by colony formation experiment.S1P antagonist W146(10 μmol·L-1)and protein kinase(AKT)signaling inhibitor MK2206(90 nmol·L-1)were used to detect the role of S1P signaling in the proliferation of breast cancer cells.The expression of phosphorylate signal transducer and activator of transcription 3(p-STAT3),c-Myc proteins were detected by Western blot.Results The growth ratio of BT549 cells in control group and 0.1,1.0,10.0 μmol·L-1experimental groups were 1.00±0.03,1.13±0.06,1.06±0.10 and 1.07±0.03,0.1 μmol·L-1 SEW2871 promot the cell proliferation(P<0.05).Compared between WT group,MUT group and LUC group,the growth rate and the number of clonal colonies were increased after overexpression of S1P receptor(all P<0.05).The growth ratio of BT549 cells after treatment with W146 and MK2206 in the LUC group,WT group and MUT group were 1.25±0.12,1.31±0.03,1.43±0.14 and 0.87±0.15,0.77±0.03,0.88±0.02.Compared between MUT group,WT group and corresponding DMSO group,the differences were statistically significant(all P<0.01).The number of cell clony formation number after treatment with W146 were 65.65±5.12,141.48±5.63 and 93.64±5.14;compared between MUT,WT group and corresponding DMSO group,the differences were statistically significant(all P<0.05).The relative protein expression levels of p-STAT3 in LUC group,WT group and MUT group were 0.67±0.04,0.69±0.08 and 0.81±0.06,the relative protein expression levels of proto-oncogene c-Myc were 1.69±0.03,0.70±0.10 and 0.67±0.07,compared between WT group,MUT group and corresponding DMSO group,the difference was statistically significant(P<0.05).Conclusion S1P signaling can promote proliferation in breast cancer BT549 cells,and the mechanism could be related to AKT and STAT3 signaling pathway.
10.Risk control in phase Ⅰ clinical trials of macromolecular drugs
Wen-Jing BAI ; Juan WANG ; Yue LIU ; Ting-Ting WANG ; Ti-Ti WANG ; Ya-Ru WANG ; Yu-Ying YIN ; Xin WANG
The Chinese Journal of Clinical Pharmacology 2024;40(16):2424-2427
The author analyzed the characteristics of phase Ⅰ clinical trials of macromolecular drugs,the characteristics of evaluation indicators of phase Ⅰ clinical trials of macromolecular drugs,such as safety evaluation,pharmacokinetic and pharmacodynamic evaluation,and efficacy evaluation.And the control points of subjects management,management of experimental macromolecule drugs,and identified and potential risk factors of macromolecule drugs in the implementation of risk management for phase Ⅰ clinical trials of macromolecule drugs were discussed in depth based on previous clinical trial research experience.Through discussion and analysis,the author suggests that each research center can formulate risk control strategies according to the actual situation,improve the efficiency of risk control,and facilitate the smooth implementation of clinical trials and improve the quality of clinical trials.

Result Analysis
Print
Save
E-mail