1.The Role of Golgi Apparatus Homeostasis in Regulating Cell Death and Major Diseases
Xin-Yue CHENG ; Feng-Hua YAO ; Hui ZHANG ; Yong-Ming YAO
Progress in Biochemistry and Biophysics 2025;52(8):2051-2067
The Golgi apparatus (GA) is a key membranous organelle in eukaryotic cells, acting as a central component of the endomembrane system. It plays an irreplaceable role in the processing, sorting, trafficking, and modification of proteins and lipids. Under normal conditions, the GA cooperates with other organelles, including the endoplasmic reticulum (ER), lysosomes, mitochondria, and others, to achieve the precise processing and targeted transport of nearly one-third of intracellular proteins, thereby ensuring normal cellular physiological functions and adaptability to environmental changes. This function relies on Golgi protein quality control (PQC) mechanisms, which recognize and handle misfolded or aberrantly modified proteins by retrograde transport to the ER, proteasomal degradation, or lysosomal clearance, thus preventing the accumulation of toxic proteins. In addition, Golgi-specific autophagy (Golgiphagy), as a selective autophagy mechanism, is also crucial for removing damaged or excess Golgi components and maintaining its structural and functional homeostasis. Under pathological conditions such as oxidative stress and infection, the Golgi apparatus suffers damage and stress, and its homeostatic regulatory network may be disrupted, leading to the accumulation of misfolded proteins, membrane disorganization, and trafficking dysfunction. When the capacity and function of the Golgi fail to meet cellular demands, cells activate a series of adaptive signaling pathways to alleviate Golgi stress and enhance Golgi function. This process reflects the dynamic regulation of Golgi capacity to meet physiological needs. To date, 7 signaling pathways related to the Golgi stress response have been identified in mammalian cells. Although these pathways have different mechanisms, they all help restore Golgi homeostasis and function and are vital for maintaining overall cellular homeostasis. It is noteworthy that the regulation of Golgi homeostasis is closely related to multiple programmed cell death pathways, including apoptosis, ferroptosis, and pyroptosis. Once Golgi function is disrupted, these signaling pathways may induce cell death, ultimately participating in the occurrence and progression of diseases. Studies have shown that Golgi homeostatic imbalance plays an important pathological role in various major diseases. For example, in Alzheimer’s disease (AD) and Parkinson’s disease (PD), Golgi fragmentation and dysfunction aggravate the abnormal processing of amyloid β-protein (Aβ) and Tau protein, promoting neuronal loss and advancing neurodegenerative processes. In cancer, Golgi homeostatic imbalance is closely associated with increased genomic instability, enhanced tumor cell proliferation, migration, invasion, and increased resistance to cell death, which are important factors in tumor initiation and progression. In infectious diseases, pathogens such as viruses and bacteria hijack the Golgi trafficking system to promote their replication while inducing host defensive cell death responses. This process is also a key mechanism in host-pathogen interactions. This review focuses on the role of the Golgi apparatus in cell death and major diseases, systematically summarizing the Golgi stress response, regulatory mechanisms, and the role of Golgi-specific autophagy in maintaining homeostasis. It emphasizes the signaling regulatory role of the Golgi apparatus in apoptosis, ferroptosis, and pyroptosis. By integrating the latest research progress, it further clarifies the pathological significance of Golgi homeostatic disruption in neurodegenerative diseases, cancer, and infectious diseases, and reveals its potential mechanisms in cellular signal regulation.
2.Analysis of T7 RNA Polymerase: From Structure-function Relationship to dsRNA Challenge and Biotechnological Applications
Wei-Chen NING ; Yu HUA ; Hui-Ling YOU ; Qiu-Shi LI ; Yao WU ; Yun-Long LIU ; Zhen-Xin HU
Progress in Biochemistry and Biophysics 2025;52(9):2280-2294
T7 RNA polymerase (T7 RNAP) is one of the simplest known RNA polymerases. Its unique structural features make it a critical model for studying the mechanisms of RNA synthesis. This review systematically examines the static crystal structure of T7 RNAP, beginning with an in-depth examination of its characteristic “thumb”, “palm”, and “finger” domains, which form the classic “right-hand-like” architecture. By detailing these structural elements, this review establishes a foundation for understanding the overall organization of T7 RNAP. This review systematically maps the functional roles of secondary structural elements and their subdomains in transcriptional catalysis, progressively elucidating the fundamental relationships between structure and function. Further, the intrinsic flexibility of T7 RNAP and its applications in research are also discussed. Additionally, the review presents the structural diagrams of the enzyme at different stages of the transcription process, and through these diagrams, it provides a detailed description of the complete transcription process of T7 RNAP. By integrating structural dynamics and kinetics analyses, the review constructs a comprehensive framework that bridges static structure to dynamic processes. Despite its advantages, T7 RNAP has a notable limitation: it generates double-stranded RNA (dsRNA) as a byproduct. The presence of dsRNA not only compromises the purity of mRNA products but also elicits nonspecific immune responses, which pose significant challenges for biotechnological and therapeutic applications. The review provides a detailed exploration of the mechanisms underlying dsRNA formation during T7 RNAP catalysis, reviews current strategies to mitigate this issue, and highlights recent progress in the field. A key focus is the semi-rational design of T7 RNAP mutants engineered to minimize dsRNA generation and enhance catalytic performance. Beyond its role in transcription, T7 RNAP exhibits rapid development and extensive application in fields, including gene editing, biosensing, and mRNA vaccines. This review systematically examines the structure-function relationships of T7 RNAP, elucidates the mechanisms of dsRNA formation, and discusses engineering strategies to optimize its performance. It further explores the engineering optimization and functional expansion of T7 RNAP. Furthermore, this review also addresses the pressing issues that currently need resolution, discusses the major challenges in the practical application of T7 RNAP, and provides an outlook on potential future research directions. In summary, this review provides a comprehensive analysis of T7 RNAP, ranging from its structural architecture to cutting-edge applications. We systematically examine: (1) the characteristic right-hand domains (thumb, palm, fingers) that define its minimalistic structure; (2) the structure-function relationships underlying transcriptional catalysis; and (3) the dynamic transitions during the complete transcription cycle. While highlighting T7 RNAP’s versatility in gene editing, biosensing, and mRNA vaccine production, we critically address its major limitation—dsRNA byproduct formation—and evaluate engineering solutions including semi-rationally designed mutants. By synthesizing current knowledge and identifying key challenges, this work aims to provide novel insights for the development and application of T7 RNAP and to foster further thought and progress in related fields.
3. Mechanism and experimental validation of Zukamu granules in treatment of bronchial asthma based on network pharmacology and molecular docking
Yan-Min HOU ; Li-Juan ZHANG ; Yu-Yao LI ; Wen-Xin ZHOU ; Hang-Yu WANG ; Jin-Hui WANG ; Ke ZHANG ; Mei XU ; Dong LIU ; Jin-Hui WANG
Chinese Pharmacological Bulletin 2024;40(2):363-371
Aim To anticipate the mechanism of zuka- mu granules (ZKMG) in the treatment of bronchial asthma, and to confirm the projected outcomes through in vivo tests via using network pharmacology and molecular docking technology. Methods The database was examined for ZKMG targets, active substances, and prospective targets for bronchial asthma. The protein protein interaction network diagram (PPI) and the medication component target network were created using ZKMG and the intersection targets of bronchial asthma. The Kyoto Encyclopedia of Genes and Genomics (KEGG) and gene ontology (GO) were used for enrichment analysis, and network pharmacology findings were used for molecular docking, ovalbumin (OVA) intraperitoneal injection was used to create a bronchial asthma model, and in vivo tests were used to confirm how ZKMG affected bronchial asthma. Results There were 176 key targets for ZKMG's treatment of bronchial asthma, most of which involved biological processes like signal transduction, negative regulation of apoptotic processes, and angiogenesis. ZKMG contained 194 potentially active components, including quercetin, kaempferol, luteolin, and other important components. Via signaling pathways such TNF, vascular endothelial growth factor A (VEGFA), cancer pathway, and MAPK, they had therapeutic effects on bronchial asthma. Conclusion Key components had strong binding activity with appropriate targets, according to molecular docking data. In vivo tests showed that ZKMG could reduce p-p38, p-ERKl/2, and p-I
4.Research Advance on Smartphone-based Visual Biosensor in Point-of-Care Testing
Xian-Xin XIANG ; Hua-Yue SUN ; Hui-Ning CHAI ; Kun YU ; Li-Jun QU ; Guang-Yao ZHANG ; Xue-Ji ZHANG
Chinese Journal of Analytical Chemistry 2024;52(2):145-156
Human physiological indicators have become an important standard for assessing health in modern society.Traditional detection methods often require a separate laboratory,complex operation process and long detection time,so it is urgent to develop portable,fast and accurate on-site detection technologies for bioanalysis.Point-of-care testing(POCT),which differs from traditional laboratory testing,can realize the rapid in situ detection of biomarkers without the complicated analytical process of the laboratory.Smartphones,which are an essential tool in our daily life,not only have independent operating systems and built-in storage functions,but also have high-definition cameras,which have great application potential in POCT visualization.The combination of various biosensing technologies and smartphones has developed into a new direction in the field of POCT.This review mainly introduced the research progress of smartphone-based visual biosensors in POCT in recent years,including colorimetric sensors,fluorescence sensors,chemiluminescence sensors and electrochemiluminescence sensors.Finally,the problems faced by smart-phone-based visual biosensors in the application of POCT were summarized,and their future development was prospected.
5.Molecular Mechanism Study of β-amyloid Aggregation Inhibition by Transthyretin
Shuang-Yan ZHOU ; Yao-Xin HUANG ; Xin LI ; Jia-Hui BAI ; Shuai YUAN
Progress in Biochemistry and Biophysics 2024;51(3):633-646
ObjectiveIt was reported that the transthyretin (TTR) has a neuroprotective effect on Alzheimer’s disease (AD), which is manifested by the ability of TTR to inhibit the pathological aggregation of amyloid beta protein (Aβ). In this work, we investigated the mechanism of the interactions between TTR and Aβ at the molecular level to reveal the neuroprotective effect of TTR on AD. MethodsProtein-protein docking was used to explore the models of interaction between different structural forms of TTR and Aβ, and molecular dynamics simulation was further applied to investigate the dynamic process of the interaction between the two. ResultsBoth TTR tetramer and monomer can interact with Aβ monomer, and the thyroxine-binding channel of TTR tetramer is the main binding site of Aβ monomer. In addition, the EF helix and EF loop of TTR tetramer were also able to bind Aβ monomer. When the TTR tetramer dissociates, the hydrophobic site of the internal TTR monomer is exposed, which has a strong affinity for Aβ monomer. For the interaction between Aβ aggregates and TTR, a higher degree of aggregation can be formed between TTR monomer and Aβ aggregates due to the β-sheet-rich property of TTR monomer and Aβ aggregates, which may therefore reduce the cytotoxicity of Aβ aggregates. ConclusionBoth TTR tetramer and monomer can inhibit Aβ aggregation by “sequestering” Aβ monomer, while TTR monomer can reduce the cytotoxicity of Aβ aggregates by forming large co-aggregation with Aβ aggregates. This work can provide an important theoretical basis for the design and discovery of anti-AD drugs based on the neuroprotective effects of TTR.
6.Research of high iodine induced damage to thyroid epithelial cells through endoplasmic reticulum stress and P38MAPK signaling pathway
Xin-Na YANG ; Hui-Yao CAI ; Li-Jun CHEN ; Bo LIANG
The Chinese Journal of Clinical Pharmacology 2024;40(16):2339-2343
Objective To investigate the role of endoplasmic reticulum stress and p38 mitogen-activated protein kinase P38MAPK signaling pathway in thyroid epithelial cell injury induced by high iodine.Methods The thyroid epithelial cells Nthy-ori 3-1 were randomly divided into control group(normal culture),model group(40 mmol·L-1 potassium iodide),4-phenylbutyric acid(4-PB A)group(40 mmol·L-1 potassium iodide and 2 mmol·L-1 4-PBA)and SB203580 group(40 mmol·L-1 potassium iodide and 10 μmol·L-1 SB203580).Western blot was used to detect the expression of glucose regulated protein 78(GRP78)and p-P38/P38 of Nthy-ori 3-1 cells.MTT and colony formation experiments were used to detect the proliferation level.Flow cytometry was used to detect the apoptosis level.Enzyme-linked immunosorbent assay(ELISA)was used to detect the level of interleukin-6(IL-6).Results The expression levels of GRP78 protein in control group,model group,4-PBA group and SB203580 group were 0.15±0.03,0.61±0.07,0.27±0.03 and 0.37±0.04;the ratios of p-P38/P38 were 0.12±0.03,0.53±0.04,0.35±0.04 and 0.25±0.03;cell survival rates were(100.00±0.00)%,(53.71±6.16)%,(80.24±8.17)%and(71.29±7.36)%;the number of clones formed was 271.36±25.18,96.09±10.79,183.24±15.36 and 141.24±16.18;the apoptosis rates were(1.04±0.21)%,(9.27±1.67)%,(3.18±1.52)%and(3.82±1.09)%;IL-6 secretion levels were(0.71±0.08),(9.17±0.87),(3.26±0.29)and(4.71±0.41)nmol·L-1,respectively.For the above indicators,there was significant difference between the model group and the control group(all P<0.05);there was significant difference between the 4-PBA group,SB203580 group and the model group(all P<0.05).Conclusion High iodine can inhibit the proliferation of Nthy-ori 3-1 cells and induce apoptosis and secretion of inflammatory factors,which may be related to the activation of endoplasmic reticulum stress and P38MAPK signaling pathway by high iodine.
7.Association of Cytokines with Clinical Indicators in Patients with Drug-Induced Liver Injury
Hua Wei CAO ; Ting Ting JIANG ; Ge SHEN ; Wen DENG ; Yu Shi WANG ; Yu Zi ZHANG ; Xin Xin LI ; Yao LU ; Lu ZHANG ; Yu Ru LIU ; Min CHANG ; Ling Shu WU ; Jiao Yuan GAO ; Xiao Hong HAO ; Xue Xiao CHEN ; Ping Lei HU ; Jiao Meng XU ; Wei YI ; Yao XIE ; Hui Ming LI
Biomedical and Environmental Sciences 2024;37(5):494-502
Objective To explore characteristics of clinical parameters and cytokines in patients with drug-induced liver injury(DILI)caused by different drugs and their correlation with clinical indicators. Method The study was conducted on patients who were up to Review of Uncertainties in Confidence Assessment for Medical Tests(RUCAM)scoring criteria and clinically diagnosed with DILI.Based on Chinese herbal medicine,cardiovascular drugs,non-steroidal anti-inflammatory drugs(NSAIDs),anti-infective drugs,and other drugs,patients were divided into five groups.Cytokines were measured by Luminex technology.Baseline characteristics of clinical biochemical indicators and cytokines in DILI patients and their correlation were analyzed. Results 73 patients were enrolled.Age among five groups was statistically different(P=0.032).Alanine aminotransferase(ALT)(P=0.033)and aspartate aminotransferase(AST)(P=0.007)in NSAIDs group were higher than those in chinese herbal medicine group.Interleukin-6(IL-6)and tumor necrosis factor alpha(TNF-α)in patients with Chinese herbal medicine(IL-6:P<0.001;TNF-α:P<0.001)and cardiovascular medicine(IL-6:P=0.020;TNF-α:P=0.001)were lower than those in NSAIDs group.There was a positive correlation between ALT(r=0.697,P=0.025),AST(r=0.721,P=0.019),and IL-6 in NSAIDs group. Conclusion Older age may be more prone to DILI.Patients with NSAIDs have more severe liver damage in early stages of DILI,TNF-α and IL-6 may partake the inflammatory process of DILI.
8.Assessment of respiratory protection competency of staff in healthcare facilities
Hui-Xue JIA ; Xi YAO ; Mei-Hua HU ; Bing-Li ZHANG ; Xin-Ying SUN ; Zi-Han LI ; Ming-Zhuo DENG ; Lian-He LU ; Jie LI ; Li-Hong SONG ; Jian-Yu LU ; Xue-Mei SONG ; Hang GAO ; Liu-Yi LI
Chinese Journal of Infection Control 2024;23(1):25-31
Objective To understand the respiratory protection competency of staff in hospitals.Methods Staff from six hospitals of different levels and characteristics in Beijing were selected,including doctors,nurses,medical technicians,and servicers,to conduct knowledge assessment on respiratory protection competency.According to exposure risks of respiratory infectious diseases,based on actual cases and daily work scenarios,content of respira-tory protection competency assessment was designed from three aspects:identification of respiratory infectious di-seases,transmission routes and corresponding protection requirements,as well as correct selection and use of masks.The assessment included 6,6,and 8 knowledge points respectively,with 20 knowledge points in total,all of which were choice questions.For multiple-choice questions,full marks,partial marks,and no mark were given respective-ly if all options were correct,partial options were correct and without incorrect options,and partial options were correct but with incorrect options.Difficulty and discrimination analyses on question of each knowledge point was conducted based on classical test theory.Results The respiratory protection competency knowledge assessment for 326 staff members at different risk levels in 6 hospitals showed that concerning the 20 knowledge points,more than 60%participants got full marks for 6 points,while the proportion of full marks for other questions was relatively low.Less than 10%participants got full marks for the following 5 knowledge points:types of airborne diseases,types of droplet-borne diseases,conventional measures for the prevention and control of healthcare-associated infec-tion with respiratory infectious diseases,indications for wearing respirators,and indications for wearing medical protective masks.Among the 20 knowledge questions,5,1,and 14 questions were relatively easy,medium,and difficult,respectively;6,1,4,and 9 questions were with discrimination levels of ≥0.4,0.30-0.39,0.20-0.29,and ≤0.19,respectively.Conclusion There is still much room for hospital staff to improve their respiratory protection competency,especially in the recognition of diseases with different transmission routes and the indications for wearing different types of masks.
9.Current status of neonatal skin disinfectant use in 71 medical institutions in China
Jing-Wen MENG ; Qian-Nan ZHANG ; Shu-Hui YU ; Bian LI ; Xue-Yan DU ; Xin ZHANG ; Xi YAO
Chinese Journal of Infection Control 2024;23(2):169-174
Objective To understand the application of skin disinfectant in neonatal intensive care units(NICUs)nationwide.Methods From April to May 2023,application of skin disinfectant in 93 NICUs nationwide was sur-veyed with convenience sampling method by a self-designed questionnaire.Questionnaire contents included types of disinfectant,disinfection tools,cleaning and disinfection frequency,disinfectant drying status,removal of disinfec-tant,and adverse reactions caused by disinfectant.Results A total of 93 nursing units in 71 medical institutions from 25 provinces/municipalities were included in this study.In NICUs,three most commonly used disinfectants were ethanol(79.57%),iodophor(74.19%),and anerdian(62.37%).In nursing units for neonates<2 months of age,chlorhexidine was prohibited in 28 units(30.11%),used with caution in 23 units(24.73%),allowed in 9 units(9.68%),and there was no unified requirement in 33 units(35.48%).When using ethanol,staff only wiped once in 13(17.57%)nursing units.In some nursing units,there was no unified requirements on the wiping fre-quency of disinfectant.As for the removal of residual iodine,saline was used in 29(42.03%)nursing units,ethanol in 8(11.59%),and 19(27.54%)did not have unified requirements.The adverse reactions of disinfectant mainly included rash and contact dermatitis.Disinfectants that caused adverse reactions included ethanol,iodophor,aner-dian,and chlorhexidine.Conclusion In clinical practice,unified standards for the use of neonatal skin disinfectant remain absent.Selection and use of neonatal skin disinfectant vary considerably.Neonatal skin disinfectants have common adverse reactions.It is necessary to strengthen the training of health care workers on the standardized use of disinfectant,as well as carry out large-scale and rigorous randomized controlled trial designs to provide scientific basis for the correct selection of disinfectant.
10.The construction of integrated urban medical groups in China:Typical models,key issues and path optimization
Hua-Wei TAN ; Xin-Yi PENG ; Hui YAO ; Xue-Yu ZHANG ; Le-Ming ZHOU ; Ying-Chun CHEN
Chinese Journal of Health Policy 2024;17(1):9-16
This paper outlines the common aspects of constructing integrated urban medical groups,focusing on governance,organizational restructuring,operational modes,and mechanism synergy.It then delves into the challenges in China's group construction,highlighting issues with power-responsibility alignment,capacity evolution,incentive alignment,and performance evaluation.Finally,the paper suggests strategies to enhance China's compact urban medical groups,focusing on governance reform,capacity building,benefit integration,and performance evaluation.

Result Analysis
Print
Save
E-mail