1.Research progress on strategies to target intestinal microbiota to improve drug resistance in tumor immunotherapy
Hui-ling LI ; Bi-qing LIU ; Ying-nan FENG ; Xin HU ; Lan ZHANG ; Xian-zhe DONG
Acta Pharmaceutica Sinica 2025;60(2):260-268
A growing body of research points out that gut microbiota plays a key role in tumor immunotherapy. By optimizing the composition of intestinal microbiota, it is possible to effectively improve immunotherapy resistance and enhance its therapeutic effect. This article comprehensively analyzes the mechanism of intestinal microbiota influencing tumor immunotherapy resistance, expounds the current strategies for targeted regulation of intestinal microbiota, such as traditional Chinese medicine and plant components, fecal microbiota transplantation, probiotics, prebiotics and dietary therapy, and explores the potential mechanisms of these strategies to improve patients' resistance to tumor immunotherapy. At the same time, the article also briefly discusses the prospects and challenges of targeting intestinal microbiota to improve tumor immunotherapy resistance, which provides a reference for related research to help the strategy research of reversing tumor immunotherapy resistance.
2.PANoptosis: a New Target for Cardiovascular Diseases
Xin-Nong CHEN ; Ying-Xi YANG ; Xiao-Chen GUO ; Jun-Ping ZHANG ; Na-Wen LIU
Progress in Biochemistry and Biophysics 2025;52(5):1113-1125
The innate immune system detects cellular stressors and microbial infections, activating programmed cell death (PCD) pathways to eliminate intracellular pathogens and maintain homeostasis. Among these pathways, pyroptosis, apoptosis, and necroptosis represent the most characteristic forms of PCD. Although initially regarded as mechanistically distinct, emerging research has revealed significant crosstalk among their signaling cascades. Consequently, the concept of PANoptosis has been proposed—an inflammatory cell death pathway driven by caspases and receptor-interacting protein kinases (RIPKs), and regulated by the PANoptosome, which integrates key features of pyroptosis, apoptosis, and necroptosis. The core mechanism of PANoptosis involves the assembly and activation of the PANoptosome, a macromolecular complex composed of three structural components: sensor proteins, adaptor proteins, and effector proteins. Sensors detect upstream stimuli and transmit signals downstream, recruiting critical molecules via adaptors to form a molecular scaffold. This scaffold activates effectors, triggering intracellular signaling cascades that culminate in PANoptosis. The PANoptosome is regulated by upstream molecules such as interferon regulatory factor 1 (IRF1), transforming growth factor beta-activated kinase 1 (TAK1), and adenosine deaminase acting on RNA 1 (ADAR1), which function as molecular switches to control PANoptosis. Targeting these switches represents a promising therapeutic strategy. Furthermore, PANoptosis is influenced by organelle functions, including those of the mitochondria, endoplasmic reticulum, and lysosomes, highlighting organelle-targeted interventions as effective regulatory approaches. Cardiovascular diseases (CVDs), the leading global cause of morbidity and mortality, are profoundly impacted by PCD. Extensive crosstalk among multiple cell death pathways in CVDs suggests a complex regulatory network. As a novel cell death modality bridging pyroptosis, apoptosis, and necroptosis, PANoptosis offers fresh insights into the complexity of cell death and provides innovative strategies for CVD treatment. This review summarizes current evidence linking PANoptosis to various CVDs, including myocardial ischemia/reperfusion injury, myocardial infarction, heart failure, arrhythmogenic cardiomyopathy, sepsis-induced cardiomyopathy, cardiotoxic injury, atherosclerosis, abdominal aortic aneurysm, thoracic aortic aneurysm and dissection, and vascular toxic injury, thereby providing critical clinical insights into CVD pathophysiology. However, the current understanding of PANoptosis in CVDs remains incomplete. First, while PANoptosis in cardiomyocytes and vascular smooth muscle cells has been implicated in CVD pathogenesis, its role in other cell types—such as vascular endothelial cells and immune cells (e.g., macrophages)—warrants further investigation. Second, although pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) are known to activate the PANoptosome in infectious diseases, the stimuli driving PANoptosis in CVDs remain poorly defined. Additionally, methodological challenges persist in identifying PANoptosome assembly in CVDs and in establishing reliable PANoptosis models. Beyond the diseases discussed, PANoptosis may also play a role in viral myocarditis and diabetic cardiomyopathy, necessitating further exploration. In conclusion, elucidating the role of PANoptosis in CVDs opens new avenues for drug development. Targeting this pathway could yield transformative therapies, addressing unmet clinical needs in cardiovascular medicine.
3.Inflammatory and Immunomodulatory Effects of Tripterygium wilfordii Multiglycoside in Mouse Models of Psoriasis Keratinocytes.
Shuo ZHANG ; Hong-Jin LI ; Chun-Mei YANG ; Liu LIU ; Xiao-Ying SUN ; Jiao WANG ; Si-Ting CHEN ; Yi LU ; Man-Qi HU ; Ge YAN ; Ya-Qiong ZHOU ; Xiao MIAO ; Xin LI ; Bin LI
Chinese journal of integrative medicine 2024;30(3):222-229
OBJECTIVE:
To determine the role of Tripterygium wilfordii multiglycoside (TGW) in the treatment of psoriatic dermatitis from a cellular immunological perspective.
METHODS:
Mouse models of psoriatic dermatitis were established by imiquimod (IMQ). Twelve male BALB/c mice were assigned to IMQ or IMQ+TGW groups according to a random number table. Histopathological changes in vivo were assessed by hematoxylin and eosin staining. Ratios of immune cells and cytokines in mice, as well as PAM212 cell proliferation in vitro were assessed by flow cytometry. Pro-inflammatory cytokine expression was determined using reverse transcription quantitative polymerase chain reaction.
RESULTS:
TGW significantly ameliorated the severity of IMQ-induced psoriasis-like mouse skin lesions and restrained the activation of CD45+ cells, neutrophils and T lymphocytes (all P<0.01). Moreover, TGW significantly attenuated keratinocytes (KCs) proliferation and downregulated the mRNA levels of inflammatory cytokines including interleukin (IL)-17A, IL-23, tumor necrosis factor α, and chemokine (C-X-C motif) ligand 1 (P<0.01 or P<0.05). Furthermore, it reduced the number of γ δ T17 cells in skin lesion of mice and draining lymph nodes (P<0.01).
CONCLUSIONS
TGW improved psoriasis-like inflammation by inhibiting KCs proliferation, as well as the associated immune cells and cytokine expression. It inhibited IL-17 secretion from γ δ T cells, which improved the immune-inflammatory microenvironment of psoriasis.
Male
;
Animals
;
Mice
;
Tripterygium
;
Psoriasis/drug therapy*
;
Keratinocytes
;
Skin Diseases/metabolism*
;
Cytokines/metabolism*
;
Imiquimod/metabolism*
;
Dermatitis/pathology*
;
Disease Models, Animal
;
Mice, Inbred BALB C
;
Skin/metabolism*
4. Mechanism of ellagic acid improving cognitive dysfunction in APP/PS double transgenic mice based on PI3K/AKT/GSK-3β signaling pathway
Li-Li ZHONG ; Xin LU ; Ying YU ; Qin-Yan ZHAO ; Jing ZHANG ; Tong-Hui LIU ; Xue-Yan NI ; Li-Li ZHONG ; Yan-Ling CHE ; Dan WU ; Hong LIU
Chinese Pharmacological Bulletin 2024;40(1):90-98
Aim To investigate the effect of ellagic acid (EA) on cognitive function in APP/PS 1 double- transgenic mice, and to explore the regulatory mechanism of ellagic acid on the level of oxidative stress in the hippocampus of double-transgenic mice based on the phosphatidylinositol 3-kinase/protein kinase B/glycogen synthase kinase-3 (PI3K/AKT/GSK-3 β) signaling pathway. Methods Thirty-two SPF-grade 6-month-old APP/PS 1 double transgenic mice were randomly divided into four groups, namely, APP/PS 1 group, APP/PS1 + EA group, APP/PS1 + LY294002 group, APP/PS 1 + EA + LY294002 group, with eight mice in each group, and eight SPF-grade C57BL/6J wild type mice ( Wild type) were selected as the blank control group. The APP/PS 1 + EA group was given 50 mg · kg
5. Quercetin plays a neuroprotective role in inhibiting mitochondrial apoptosis by mediating JNK signaling pathway
Si-Fan YAO ; Xin ZHANG ; Yue-Ying DAI ; Li-Xia SHEN
Chinese Pharmacological Bulletin 2024;40(2):256-262
Aim To study the mechanism of quereetin (Que) inhibiting mitochondrial damage induced by Aβ
6.Preparation and Recognition Features of Molecularly Imprinted Polymer Membrane for Lamotrigine in Plasma
Dong-Yu LU ; Yu-Xin YOU ; Yan-Lin ZHAO ; Han JIANG ; Ying ZHANG ; Yan DU ; Dao-Quan TANG
Chinese Journal of Analytical Chemistry 2024;52(1):80-92
The molecularly imprinted polymers membranes(MIPMs)were prepared for selective adsorption of lamotrigine(LTG)in plasma by surface molecular imprinting technology with polyvinylidenefluoride(PVDF)membranes as supporter,lamotrigine as template molecule,methyl methacrylate as functional monomer,ethylene glycol dimethacrylate as cross-linking agent,azodiisobutyronitrile as initiator and acetonitrile-dimethylformamide(1∶1.5,V/V)as pore-forming agent.The prepared MIPMs were characterized by scanning electron microscope,Fourier transform infrared spectroscopy,Brunaner-emmet-teller measurements,X-ray photoelectron spectroscopy,and thermogravimetric analysis.The adsorption properties of the materials were investigated by kinetic adsorption,isothermal adsorption,selective adsorption,adsorption-desorption and reusability experiments.The results showed that the imprinted layer of LTG was successfully coated on the surface of PVDF,and the materials had uniform particle size.The adsorption capacity and imprinting factor of the MIPMs towards LTG were 3.77 mg/g and 8.97,respectively.The nanomaterials showed fast mass transfer rate(30 min)and good reusability(the adsorption efficiency was 86.66%after 6 cycles),and could be used for the adsorption of LTG in plasma with low matrix interference,recoveries of 86.54%-90.48%and RSD of 1.51%-3.15%(n=5).The proposed LTG MIPMs were demonstrated to be simple and environment friendly,and had high selectivity in rapid separation and extraction of LTG in plasma.
7.Research Progress on Biological Evidence Identification in Fire Scenes
Yan-Ru YAO ; Jing JIN ; Ying-Jie WANG ; Jin-Zhuan ZHANG ; Ying-Zhe LI ; Yong-Xin XU
Journal of Forensic Medicine 2024;40(1):64-69
Biological evidence is relatively common evidence in criminal cases,and it has strong pro-bative power because it carries DNA information for individual identification.At the scene of fire-related cases,the complex thermal environment,the escape of trapped people,the firefighting and res-cue operations,and the deliberate destruction of criminal suspects will all affect the biological evi-dence in the fire scene.Scholars at home and abroad have explored and studied the effectiveness of biological evidence identification in fire scenes,and found that the blood stains,semen stains,bones,etc.are the main biological evidence which can be easily recovered with DNA in fire scenes.In order to analyze the research status and development trend of biological evidence in fire scenes,this paper systematically sorts out the relevant research,mainly including the soot removal technology,appearance method of typical biological evidence,and possibility of identifying other biological evidence.This pa-per also prospects the next step of research direction,in order to provide reference for the identifica-tion of biological evidence and improve the value of biological evidence in fire scenes.
8.Sonogenetics and its application in military medicine
Ying-Tan ZHUANG ; Bo-Yu LUO ; Xiao-Dong ZHANG ; Tuo-Yu LIU ; Xin-Yue FAN ; Guo-Hua XIA ; Qing YUAN ; Bin ZHENG ; Yue TENG
Medical Journal of Chinese People's Liberation Army 2024;49(3):360-366
Sonogenetics is an emerging synthetic biology technique that uses sound waves to activate mechanosensitive ion channel proteins on the cell surface to regulate cell behavior and function.Due to the widespread presence of mechanically sensitive ion channel systems in cells and the advantages of non-invasion,strong penetrability,high safety and high accuracy of sonogenetics technology,it has great development potential in basic biomedical research and clinical applications,especially in neuronal regulation,tumor mechanism research,sonodynamic therapy and hearing impairment.This review discusses the basic principles of sonogenetics,the development status of sonogenetics and its application in the prevention and treatment of noise-induced hearing loss,summarizes and analyzes the current challenges and future development direction,thus providing a reference for further research and development of sonogenetics in the field of military medicine.
9.Severity of loneliness and factors associated with social and emotional loneliness among the elderly in three districts in Shanghai
Yu-Wen ZHANG ; Ying WANG ; Zhao-Hua XIN ; Jia-Lie FANG ; Rui SONG ; Hao-Cen LI ; Jia-Wen KUANG ; Yu-Ting YANG ; Jing-Yi WANG
Fudan University Journal of Medical Sciences 2024;51(1):1-11
Objective To explore the severity of loneliness among the elderly in communities in Shanghai,and to identify factors associated with social and emotional loneliness respectively.Methods A cross-sectional study was conducted in older adults aged 65 years or above in Pudong New Area,Jing'an District and Huangpu District in Shanghai from Mar to Jun 2021.In Pudong New Area,multi-stage stratified random sampling was conducted based on the age and gender distribution of Shanghai,while in Huangpu District and Jing'an District convenience sampling was conducted.A total of 635 samples were included in the study.Loneliness was assessed using the De Jong Gierveld Loneliness Scale with social and emotional loneliness subscales.Logistic regression analyses were conducted to identify factors associated with social and emotional loneliness.Results Among the 635 participants,only 53 older adults(8.4%)were not lonely.Female(OR=0.46,95%CI:0.31-0.70),higher self-efficacy(OR=0.97,95%CI:0.94-1.00),more objective social support(OR=0.96,95%CI:0.93-0.99)were associated with less severe social loneliness.Meanwhile,higher level of education(secondary education,OR=0.56,95%CI:0.34-0.95;college or above,OR=0.30,95%CI:0.11-0.83)and higher self-efficacy(OR=0.96,95%CI:0.93-0.99)were associated with less severe emotional loneliness,while depression(OR=3.41,95%CI:1.76-6.60)and worse social capital(OR=2.02,95%CI:1.29-3.16)were associated with more severe emotional loneliness.Conclusion Up to 91.6%of the elderly in our study sample were moderately lonely or above.The factors associated with social loneliness include self-efficacy,gender and social support.The factors associated with emotional loneliness are self-efficacy,education level,depression,and social capital.
10.Research status,hotspots and trends of long COVID based on bibliometric analysis
Ke LIN ; Li-Jun WU ; Ji-Bin XIN ; Jun YING ; Wen-Hong ZHANG
Fudan University Journal of Medical Sciences 2024;51(2):181-190
Objective By analyzing relevant literature of long COVID,we aimed to understand the current research status,hotspots and trends in this field.Methods Based on Web of Science core collection data,bibliometric analysis was used as the main research method.The results were visualized with VOSviewer.A comprehensive analysis was performed from various perspectives including trends in publication,journal distribution,highly cited papers,international research collaboration networks,and clusters of keywords,etc.Results The field of long COVID has garnered significant global academic attention.A total of 7 877 related articles were retrievable,with a total citation count of 103 389 and an average citation count of 13.13 per article.Among them,the United States published the most articles(1 780 articles,22.59%),while China ranked fifth in publication volume(686 articles,8.71%).The international scientific cooperation network reflected the close collaborative relationships between countries in long COVID research,predominantly involving the United States,the United Kingdom,Italy,India,and China.Keywords clustering indicated that the current main research focuses in the long COVID field include:clinical manifestations,epidemiological characteristics,risk factors,and mechanisms of occurrence,treatment and rehabilitation measures of long COVID,and its impact on public and social life.Conclusion This article reveals the current state,research hotspots and trends in the long COVID field,providing valuable references for related research institutions,scholars as well as health administrative office.

Result Analysis
Print
Save
E-mail