1.Construction and Application of An Animal Model of Respiratory Syncytial Virus Infection Based on Humanized IGF1R Mice
Xiaowei YANG ; Dan XIE ; Shuran LI ; Lei BAO ; Zihan GENG ; Xian LIU ; Mengyao CUI ; Yaxin WANG ; Shan CAO ; Xiaolan CUI ; Jing SUN ; Shanshan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):48-53
ObjectiveTo construct an animal model of respiratory syncytial virus(RSV)-infected pneumonia suitable for preclinical studies. MethodsThe virulence of RSV to the four cell lines was observed by cytopathic effect (CPE), and 50% tissue culture infective dose(TCID50) was calculated. Twenty BALB/c mice were randomly divided into a normal group and a model group. Six BALB/c-hIGF1R mice served as the humanized IGF1R model group. Except for the normal group, the other groups received intranasal RSV infection on days 1 and 3 to establish a viral pneumonia model. The efficacy of establishing an RSV-induced pneumonia animal model based on humanized insulin-like growth factor 1 receptor (IGF1R) mice was evaluated by measuring organ indices, peripheral blood lymphocyte percentages, pulmonary pathology and imaging, and pulmonary viral load. Additionally, ten BALB/c mice served as normal group, and thirty-two BALB/c-hIGF1R mice were randomly assigned to humanized IGF1R model group, ribavirin group (82.5 mg·kg-¹·d-¹), and high and low dose groups of Lianhua Qingwen (3.3 mg·kg-¹·d-¹ , 1.65 mg·kg-¹·d-¹), with 8 mice per group. The viral load in lung tissue was measured after ribavirin and Lianhua Qingwen intervention, and the model was applied to the evaluation of anti-RSV drugs. ResultsIn the lungs of the humanized IGF1R model group, large solid and diffuse ground-glass shadows were seen, and the lung volume was significantly increased (P<0.01). The lung index was significantly increased (P<0.01), and both the spleen index and thymus index were significantly decreased (P<0.01). The percentages of CD3+ and CD4+T cells were significantly decreased (P<0.05), and there was a large amount of inflammation and stasis in the perivascular area of the lung tissue, which was predominantly characterized by lymphocytes. The endothelium of blood vessels was partially detached, with a small number of eosinophils. After infecting BALB/c-hIGF1R mice with RSV, the expression of viral nucleic acids in the lung tissue of the mice was significantly increased, with significant differences compared with the normal group (P<0.01). The expression of viral nucleic acids in the ribavirin group and the high and low dose groups of Lianhua Qingwen was significantly reduced, with significant differences compared with the normal group (P<0.01). ConclusionHumanized IGF1R mice are more susceptible to respiratory SVC, and the animal model of RSV-infected pneumonia based on humanized IGF1R mice was successfully constructed, which is suitable for the evaluation of anti-RSV drugs.
2.Mechanism of Tibetan Medicine Sanwei Doukoutang to Improve Cognitive Dysfunction in 5×FAD Mice Based on Wnt/β-catenin Signaling Pathway
Shuran LI ; Yaxin WANG ; Jing SUN ; Lei BAO ; Zihan GENG ; Dan XIE ; Ronghua ZHAO ; Yanyan BAO ; Qiyue SUN ; Jingsheng ZHANG ; Xinwei WANG ; Xinying LI ; Xihe CUI ; Xiaowei YANG ; LIUXIAN ; Mengyao CUI ; Qingshan LIU ; Shanshan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):54-60
ObjectiveTo explore the effects of the Tibetan medicine Sanwei Doukoutang (SWDK) on cognitive dysfunction in mice suffering from Alzheimer's disease (AD) and its related mechanism. MethodsFifty SPF 5 × FAD mice were randomly divided into model group, total ginsenoside group(0.04 g·kg-1), high-, medium-, and low-dose groups of SWDK (32.60, 16.30, 8.15 g·kg-1), with 10 mice in each group, and ten wild-type mice of the same age were used as the normal group, male and female in 1∶1. Gavage administration was performed once daily for 8 weeks. The Morris water maze test and contextual fear memory experiment were used to observe learning and memory function. Hematoxylin-eosin (HE) staining was utilized to observe the changes in the pathomorphology of brain tissue in mice. The levels of synaptophysin (SYP) and postsynaptic dense substance 95 (PSD95) in mice serum were detected by enzyme-linked immunosorbent assay (ELISA). The positive expression of brain-derived neurotrophic factor(BDNF) in the dentate gyrus (DG) region of mouse brain tissue was observed by immunohistochemistry (IHC). The protein levels of BDNF, Wnt family member 3A(Wnt3a), and β-catenin were detected in the hippocampus of mice by Western blot. ResultsCompared with the normal group of mice, the model group of mice had significantly more complex swimming routes and lower swimming speed (P<0.01), significantly lower percentage of time spent in the target quadrant (P<0.01), and a significantly lower percentage of freezing time (P<0.05). The number of neurons in the hippocampal region of mice was obviously reduced and unevenly arranged. The levels of SYP and PSD95(P<0.01) in the serum of mice were reduced, and the positive expression of BDNF in the DG region of the brain tissue of mice was reduced. The levels of hippocampal BDNF, Wnt3a, and β-catenin proteins in the hippocampus of mice were obviously reduced (P<0.05, P<0.01). Compared with the model group, the mice in the SWDK group and the total ginsenoside group had significantly shorter swimming routes, the high- and medium- dose SWDK groups significantly higher swimming speeds (P<0.01), significantly higher percentage of time spent in the target quadrant (P<0.01), obviously higher percentage of Freezing time (P<0.05), and obviously more neurons in the hippocampal region of the mice with tighter arrangement. The mice had elevated levels of serum SYP (P<0.05, P<0.01), PSD95 (P<0.01), increased BDNF-positive cells in the DG region of brain tissue, and obviously elevated levels of BDNF, Wnt3a, and β-catenin proteins in the hippocampus of mice (P<0.05, P<0.01). ConclusionSWDK can significantly improve the cognitive dysfunction of AD mice, and its mechanism may be related to regulating the Wnt/β-catenin signaling pathway, which promotes BDNF expression and thereby enhances synaptic plasticity, allowing neuronal signaling to be restored.
3.Establishment and Application of Animal Models for Disease-syndrome Combination in Viral Pneumonia: A Review
Dan XIE ; Shuran LI ; Zihan GENG ; Lei BAO ; Jing SUN ; Ronghua ZHAO ; Xian LIU ; Mengyao CUI ; Xiaowei YANG ; Xiaolan CUI ; Shanshan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):61-69
Currently, viral pneumonia (VP) presents a major challenge to global public health. Traditional Chinese medicine (TCM) prevention and treatment of VP is guided by the core concept of strengthening vital energy and eliminating pathogenic factors rather than targeting specific pathogens, alongside a holistic approach of syndrome differentiation and treatment. By summarizing the clinical syndromes of patients, the core pathogenesis was clarified to achieve individualized therapy. Animal models for disease-syndrome combination integrate the etiology and pathogenesis of VP and simulate the individualized manifestations of patients at different disease stages, providing an experimental platform for elucidating the theoretical basis of TCM in treating VP and promoting the development of effective TCM formulations. However, there are limitations in the application and promotion of disease-syndrome combination animal models due to the lack of standardization and normalization of model construction systems, which arise from diverse species selection, compound modeling methods, and multidimensional evaluation indicators. This paper systematically reviewed the recent research on animal models for disease-syndrome combination in VP from the perspective of species selection, modeling methods, evaluation indicators, and application status. Furthermore, it summarized the advantages and limitations of existing models, identifies future directions for improvement, and proposes optimization strategies. This review provides a reference for establishing standardized and normalized animal models for disease-syndrome combinations in VP, supporting the theoretical modernization of TCM in preventing and controlling emerging respiratory infectious diseases, and contributing to the development of new TCM drugs.
4.Construction and Application of An Animal Model of Respiratory Syncytial Virus Infection Based on Humanized IGF1R Mice
Xiaowei YANG ; Dan XIE ; Shuran LI ; Lei BAO ; Zihan GENG ; Xian LIU ; Mengyao CUI ; Yaxin WANG ; Shan CAO ; Xiaolan CUI ; Jing SUN ; Shanshan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):48-53
ObjectiveTo construct an animal model of respiratory syncytial virus(RSV)-infected pneumonia suitable for preclinical studies. MethodsThe virulence of RSV to the four cell lines was observed by cytopathic effect (CPE), and 50% tissue culture infective dose(TCID50) was calculated. Twenty BALB/c mice were randomly divided into a normal group and a model group. Six BALB/c-hIGF1R mice served as the humanized IGF1R model group. Except for the normal group, the other groups received intranasal RSV infection on days 1 and 3 to establish a viral pneumonia model. The efficacy of establishing an RSV-induced pneumonia animal model based on humanized insulin-like growth factor 1 receptor (IGF1R) mice was evaluated by measuring organ indices, peripheral blood lymphocyte percentages, pulmonary pathology and imaging, and pulmonary viral load. Additionally, ten BALB/c mice served as normal group, and thirty-two BALB/c-hIGF1R mice were randomly assigned to humanized IGF1R model group, ribavirin group (82.5 mg·kg-¹·d-¹), and high and low dose groups of Lianhua Qingwen (3.3 mg·kg-¹·d-¹ , 1.65 mg·kg-¹·d-¹), with 8 mice per group. The viral load in lung tissue was measured after ribavirin and Lianhua Qingwen intervention, and the model was applied to the evaluation of anti-RSV drugs. ResultsIn the lungs of the humanized IGF1R model group, large solid and diffuse ground-glass shadows were seen, and the lung volume was significantly increased (P<0.01). The lung index was significantly increased (P<0.01), and both the spleen index and thymus index were significantly decreased (P<0.01). The percentages of CD3+ and CD4+T cells were significantly decreased (P<0.05), and there was a large amount of inflammation and stasis in the perivascular area of the lung tissue, which was predominantly characterized by lymphocytes. The endothelium of blood vessels was partially detached, with a small number of eosinophils. After infecting BALB/c-hIGF1R mice with RSV, the expression of viral nucleic acids in the lung tissue of the mice was significantly increased, with significant differences compared with the normal group (P<0.01). The expression of viral nucleic acids in the ribavirin group and the high and low dose groups of Lianhua Qingwen was significantly reduced, with significant differences compared with the normal group (P<0.01). ConclusionHumanized IGF1R mice are more susceptible to respiratory SVC, and the animal model of RSV-infected pneumonia based on humanized IGF1R mice was successfully constructed, which is suitable for the evaluation of anti-RSV drugs.
5.Mechanism of Tibetan Medicine Sanwei Doukoutang to Improve Cognitive Dysfunction in 5×FAD Mice Based on Wnt/β-catenin Signaling Pathway
Shuran LI ; Yaxin WANG ; Jing SUN ; Lei BAO ; Zihan GENG ; Dan XIE ; Ronghua ZHAO ; Yanyan BAO ; Qiyue SUN ; Jingsheng ZHANG ; Xinwei WANG ; Xinying LI ; Xihe CUI ; Xiaowei YANG ; LIUXIAN ; Mengyao CUI ; Qingshan LIU ; Shanshan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):54-60
ObjectiveTo explore the effects of the Tibetan medicine Sanwei Doukoutang (SWDK) on cognitive dysfunction in mice suffering from Alzheimer's disease (AD) and its related mechanism. MethodsFifty SPF 5 × FAD mice were randomly divided into model group, total ginsenoside group(0.04 g·kg-1), high-, medium-, and low-dose groups of SWDK (32.60, 16.30, 8.15 g·kg-1), with 10 mice in each group, and ten wild-type mice of the same age were used as the normal group, male and female in 1∶1. Gavage administration was performed once daily for 8 weeks. The Morris water maze test and contextual fear memory experiment were used to observe learning and memory function. Hematoxylin-eosin (HE) staining was utilized to observe the changes in the pathomorphology of brain tissue in mice. The levels of synaptophysin (SYP) and postsynaptic dense substance 95 (PSD95) in mice serum were detected by enzyme-linked immunosorbent assay (ELISA). The positive expression of brain-derived neurotrophic factor(BDNF) in the dentate gyrus (DG) region of mouse brain tissue was observed by immunohistochemistry (IHC). The protein levels of BDNF, Wnt family member 3A(Wnt3a), and β-catenin were detected in the hippocampus of mice by Western blot. ResultsCompared with the normal group of mice, the model group of mice had significantly more complex swimming routes and lower swimming speed (P<0.01), significantly lower percentage of time spent in the target quadrant (P<0.01), and a significantly lower percentage of freezing time (P<0.05). The number of neurons in the hippocampal region of mice was obviously reduced and unevenly arranged. The levels of SYP and PSD95(P<0.01) in the serum of mice were reduced, and the positive expression of BDNF in the DG region of the brain tissue of mice was reduced. The levels of hippocampal BDNF, Wnt3a, and β-catenin proteins in the hippocampus of mice were obviously reduced (P<0.05, P<0.01). Compared with the model group, the mice in the SWDK group and the total ginsenoside group had significantly shorter swimming routes, the high- and medium- dose SWDK groups significantly higher swimming speeds (P<0.01), significantly higher percentage of time spent in the target quadrant (P<0.01), obviously higher percentage of Freezing time (P<0.05), and obviously more neurons in the hippocampal region of the mice with tighter arrangement. The mice had elevated levels of serum SYP (P<0.05, P<0.01), PSD95 (P<0.01), increased BDNF-positive cells in the DG region of brain tissue, and obviously elevated levels of BDNF, Wnt3a, and β-catenin proteins in the hippocampus of mice (P<0.05, P<0.01). ConclusionSWDK can significantly improve the cognitive dysfunction of AD mice, and its mechanism may be related to regulating the Wnt/β-catenin signaling pathway, which promotes BDNF expression and thereby enhances synaptic plasticity, allowing neuronal signaling to be restored.
6.Establishment and Application of Animal Models for Disease-syndrome Combination in Viral Pneumonia: A Review
Dan XIE ; Shuran LI ; Zihan GENG ; Lei BAO ; Jing SUN ; Ronghua ZHAO ; Xian LIU ; Mengyao CUI ; Xiaowei YANG ; Xiaolan CUI ; Shanshan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):61-69
Currently, viral pneumonia (VP) presents a major challenge to global public health. Traditional Chinese medicine (TCM) prevention and treatment of VP is guided by the core concept of strengthening vital energy and eliminating pathogenic factors rather than targeting specific pathogens, alongside a holistic approach of syndrome differentiation and treatment. By summarizing the clinical syndromes of patients, the core pathogenesis was clarified to achieve individualized therapy. Animal models for disease-syndrome combination integrate the etiology and pathogenesis of VP and simulate the individualized manifestations of patients at different disease stages, providing an experimental platform for elucidating the theoretical basis of TCM in treating VP and promoting the development of effective TCM formulations. However, there are limitations in the application and promotion of disease-syndrome combination animal models due to the lack of standardization and normalization of model construction systems, which arise from diverse species selection, compound modeling methods, and multidimensional evaluation indicators. This paper systematically reviewed the recent research on animal models for disease-syndrome combination in VP from the perspective of species selection, modeling methods, evaluation indicators, and application status. Furthermore, it summarized the advantages and limitations of existing models, identifies future directions for improvement, and proposes optimization strategies. This review provides a reference for establishing standardized and normalized animal models for disease-syndrome combinations in VP, supporting the theoretical modernization of TCM in preventing and controlling emerging respiratory infectious diseases, and contributing to the development of new TCM drugs.
7.Host Targets Interacting with Influenza Virus NP and Mechanism of Gardenia Jasminoides Iridoid Glycoside Against Influenza Virus
Xiaowei YANG ; Lei BAO ; Yu ZHANG ; Xian LIU ; Zihan GENG ; Shuran LI ; Jingsheng ZHANG ; Xiaolan CUI ; Shanshan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(13):60-66
ObjectiveTo explore host factors interacting with influenza virus nucleoprotein (NP) and study their effects on influenza virus replication, as well as the mechanism of gardenia jasminoides iridoid glycoside (IGE) in inhibiting influenza virus. MethodA yeast two-hybrid system was utilized to screen host factors that interacted with influenza virus NP. Heterogeneous nuclear ribonucleoprotein D0 (HNRNPD), glucosamine-6-phosphate deaminase 1 (GNPDA1), poly(rC)-binding protein 1 (PCBP1), and protein inhibitor of activated signal transducer and activator of transcription (STAT) protein 1 (PIAS1) were validated by immunoprecipitation assay. The effects of PIAS1 and HNRNPD on influenza virus replication were compared by a dual luciferase assay, and the effects of IGE on influenza virus replication were examined in the presence of transfected ribonucleoprotein (RNP) and knockdown of PIAS1. ICR mice were randomly divided into a normal group, model group, oseltamivir phosphate group, and high, medium, and low dose IGE groups, with 10 mice in each group. In addition to the normal group, each group was infected with the influenza A virus FM1 strain by nasal drip to establish a viral pneumonia model. The high, medium, and low dose IGE groups were given drugs of 50, 25, and 12.5 mg∙kg-1 by gavage, and the oseltamivir phosphate group was given the drug of 27.5 mg∙kg-1 by gavage. Equal amounts of distilled water were instilled in the normal and model groups for four consecutive days. Later, protein expression of PIAS1, NP, phosphorylated (p)-STAT3, STAT3, p-STAT1, and STAT1 were detected in the lung tissue by Western blot. ResultIn yeast two-hybrid assays, 16 potential host targets interacting with influenza virus NP were identified. Immunoprecipitation experiments revealed that HNRNPD and PIAS1 could interact with influenza virus NP. The dual luciferase reporter assays found that both PIAS1 knockdown and overexpression significantly affected IAV RNP activity (P<0.05, P<0.01), and the effect of HNRNPD on IAV RNP was not significant. Both high and low dose IGE groups reduced influenza virus replication (P<0.05) and reversed the increase in influenza virus replication caused by the knockdown of PIAS1(P<0.05, P<0.01). The expressions of PIAS1, NP, p-STAT3, p-STAT1, and STAT1 in the lung tissue of infected mice were reduced to different degrees in each IGE group (P<0.05, P<0.01). ConclusionPIAS1 interacts with influenza virus NP and is able to inhibit influenza virus replication. IGE may exert antiviral effects by inhibiting the activity of IAV RNP through the PIAS1/STAT1 pathway.
8.Promotion effect of chemokine CCL19-induced macrophage M1 polarization on chronic pancreatitis in mice and its mechanism
Lianzhi CUI ; Xiaowei ZHANG ; Yue ZHAI ; Yue PAN ; Xiuyan YU ; Hua ZHU
Journal of Jilin University(Medicine Edition) 2024;50(6):1587-1596
Objective:To discuss the promotion effect of chemokine C-C motif ligand 19(CCL19)induced macrophage M1 polarization on chronic pancreatitis of the mice,and to clarify its related mechanism.Methods:Ten male C57BL/6N mice were selected,and the pancreatic acinar cells and peritoneal macrophages were extracted from these mice to construct the macrophage-acinar cell co-culture system.The co-culture system cells were divided into control group,model group,and small interfering RNA CCL19(si-CCL19)group.The morphology of the acinar cells in various groups were observed under microscope.Forty mice were randomly selected and divided into normal group and chronic pancreatitis group,and there were 20 mice in each group.HE staining was used to observe the pathomorphology of pancreatic tissue of the mice in two groups;immunofluorescence staining was used to observe the expressions of cytokeratin 19(CK19),amylase,M1 macrophage-related markers inducible nitric oxide synthase(iNOS),and F4/80 in pancreatic tissue of the mice in two groups and morphology of follicular cells and the expressions of CK19,amylase in the co-culture system cells in various groups;enzyme-linked immunosorbent assay(ELISA)was used to detect the levels of tumor necrosis factor-α(TNF-α),interleukin(IL)-6,and IL-1β in serum of the mice in two groups and in the co-culture system cells in various groups;immunohistochemistry was used to observe the expression of CCL19 protein in pancreatic tissue of the mice in two groups;Western blotting method was used to detect the expression levels of CCL19 protein and two nuclear factor-κB(NF-κB)signaling pathway-related proteins P65,phosphorylate P65(p-P65),kappa B inhibitor of kinase α/β(IKKα/β),phosphorylated IKKα/β(p-IKKα/β),IkBα,phosphorylated IκBα(p-IκBα)in pancreatic tissue of the mice in two groups and in the co-culture system cells in various groups.Results:The HE staining results showed that the acinar cells in pancreatic tissue of the mice in normal group were tightly arranged;compared with normal group,the acinar cells of the mice in chronic pancreatitis group showed obvious vacuolation and acinar cell ductal metaplasia,indicating successful preparation of the mouse pancreatitis model.The immunofluorescence staining results showed that compared with control group,the acinar cells in model group exhibited severe vacuolation,the CK19 expression was significantly increased,and the amylase expression was significantly decreased;compared with model group,the acinar cell ductal metaplasia in si-CCL19 group was decreased,the CK19 expression was significantly decreased,and the amylase expression was significantly increased;compared with normal group,the expression of amylase in pancreatic tissue of the mice in chronic pancreatitis group was significantly decreased,while the expressions of CK19 and M1 macrophage markers iNOS and F4/80 were significantly increased.The ELISA results showed that compared with normal group,the serum levels of TNF-α,IL-6,and IL-1β of the mice in chronic pancreatitis group were significantly increased(P<0.05);compared with control group,the levels of TNF-α,IL-6,and IL-1β in the cells in model group were significantly increased(P<0.05);compared with model group,the levels of TNF-α,IL-6,and IL-1β in the cells in si-CCL19 group were significantly decreased(P<0.05).The immunohistochemistry results showed that compared with normal group,the expression of CCL19 protein in pancreatic tissue of the mice in chronic pancreatitis group was significantly increased.The Western blotting results showed that compared with normal group,the expression levels of CCL19 protein and NF-κB signaling pathway-related proteins p-P65,p-IKKα/β,and p-IκBα in pancreatic tissue of the mice in chronic pancreatitis group were significantly increased(P<0.05);compared with control group,the expression levels of CCL19,p-IKKα/β,p-P65,and p-IκBα proteins in the cells in model group were significantly increased(P<0.05);compared with model group,the expression levels of CCL19,p-IKKα/β,p-P65,and p-IκBα proteins in the cells in si-CCL19 group were decreased(P<0.05).Conclusion:CCL19 promotes the macrophage M1 polarization through the NF-κB signaling pathway,induces the formation of inflammatory microenvironment,and promotes the occurrence and development of pancreatitis.
9.Identification of undifferentiated and differentiated gastric cancer under endoscope based on Kyoto classification score
Chao LI ; Lihong CUI ; Xiaohui WANG ; Lan YU ; Wei WANG ; Xinyao LIU ; Xiaowei LI ; Zhihui YAN
China Journal of Endoscopy 2024;30(7):71-76
Objective To explore the value of the Kyoto classification score in differentiating undifferentiated gastric cancer from differentiated gastric cancer,and establish a predictive scoring system for differentiating undifferentiated gastric cancer under endoscope.Methods 183 gastric cancer patients were retrospectively analyzed.According to pathology,95 patients were included in the differentiated group and 88 were included in the undifferentiated group.The age,gender and Kyoto classification score of patients in the two groups were compared,and the factors associated with undifferentiated gastric cancer were screened by binary Logistic regression analysis.The predictive scoring system for undifferentiated gastric cancer was established based on the obtained odds ratio(O(R))values,and the receiver operator characteristic curve(ROC curve)was drawn.Results Compared with differentiated group,the total scores of Kyoto classification,atrophy,intestinal metaplasia and diffuse redness were lower in undifferentiated group(P<0.01).Under the age of 55(P<0.05),female(P<0.05),and C1 atrophy or no atrophy(P<0.01)were independently associated with undifferentiated gastric cancer.The area under the curve(AUC)of predictive scoring system for undifferentiated gastric cancer was 0.881(95%CI:0.828~0.934),and the sensitivity and specificity were 80.70%and 90.50%at the optimal cut-off value.Conclusion There are differences in Kyoto classification scores between undifferentiated and differentiated gastric cancer patients.The predictive scoring system of undifferentiated gastric cancer established by us has certain value in distinguishing undifferentiated gastric cancer under endoscope.
10.Dual-function natural products:Farnesoid X receptor agonist/in-flammation inhibitor for metabolic dysfunction-associated steatotic liver disease therapy
Kang WANG ; Pengfei ZHANG ; Huiyong SUN ; Shuang CUI ; Lanjia AO ; Ming CUI ; Xiaowei XU ; Lin WANG ; Yuanyuan XU ; Guangji WANG ; Hong WANG ; Haiping HAO
Chinese Journal of Natural Medicines (English Ed.) 2024;22(11):965-976
Metabolic dysfunction-associated steatotic liver disease(MASLD)is the most prevalent chronic liver disease globally,with only one Food and Drug Administration(FDA)-approved drug for its treatment.Given MASLD's complex pathophysiology,ther-apies that simultaneously target multiple pathways are highly desirable.One promising approach is dual-modulation of the famesoid X receptor(FXR),which regulates lipid and bile acid metabolism.However,FXR agonists alone are insufficient due to their limited anti-inflammatory effects.This study aimed to dto identify natural products capable of both FXR activation and inflammation inhibition to provide a comprehensive therapeutic approach for MASLD.Potential FXR ligands from the Natural Product Library were predicted via virtual screening using the Protein Preparation Wizard module in Schrodinger(2018)for molecular docking.Direct binding and regulation of candidate compounds on FXR were analyzed using surface plasmon resonance(SPR)binding assay,reporter gene ana-lysis,and reverse transcription-polymerase chain reaction(RT-PCR).The anti-inflammatory properties of these compounds were eval-uated in AML12 cells treated with tumor necrosis factor-alpha(TNF-α).Dual-function compounds with FXR agonism and inflamma-tion inhibition were further identified in cells transfected with Fxr siRNA and treated with TNF-α.The effects of these dual-function compounds on lipid accumulation and inflammation were evaluated in cells treated with palmitic acid.Results revealed that 17 natural products were predicted via computational molecular docking as potential FXR agonists,with 15 exhibiting a strong affinity for FXR recombinant protein.Nine isoflavone compounds significantly enhanced FXR reporter luciferase activity and the mRNA expressions of Shp and Ostb.Structure-activity relationship analysis indicated that introducing isopropyl or methoxy groups at the C7 position or a methoxy group at the C6 position could enhance the agonistic efficacy of isoflavones.Three compounds(2,6,and 8)were identified as dual-function natural products functioning as FXR agonists and inflammatory inhibitors,while one compound(12)acted as an FXR agonist to inhibit inflammation.These natural products protected hepatocytes against palmitic acid-induced lipid accumulation and in-flammation.In conclusion,compounds 2,6,and 8(genistein,biochanin A,and 7-methoxyisoflavone,respectively)were identified as dual-function bioactive products that transactivate FXR and inhibit inflammation,serving as potential candidates or lead compounds for MASLD therapy.

Result Analysis
Print
Save
E-mail