1.The Role of Gut Microbiota in Male Erectile Dysfunction of Rats
Zhunan XU ; Shangren WANG ; Chunxiang LIU ; Jiaqi KANG ; Yang PAN ; Zhexin ZHANG ; Hang ZHOU ; Mingming XU ; Xia LI ; Haoyu WANG ; Shuai NIU ; Li LIU ; Daqing SUN ; Xiaoqiang LIU
The World Journal of Men's Health 2025;43(1):213-227
Purpose:
Erectile dysfunction (ED) is a common male sexual dysfunction. Gut microbiota plays an important role in various diseases. To investigate the effects and mechanisms of intestinal flora dysregulation induced by high-fat diet (HFD) on erectile function.
Materials and Methods:
Male Sprague–Dawley rats aged 8 weeks were randomly divided into the normal diet (ND) and HFD groups. After 24 weeks, a measurement of erectile function was performed. We performed 16S rRNA sequencing of stool samples. Then, we established fecal microbiota transplantation (FMT) rat models by transplanting fecal microbiota from rats of ND group and HFD group to two new groups of rats respectively. After 24 weeks, erectile function of the rats was evaluated and 16S rRNA sequencing was performed, and serum samples were collected for the untargeted metabolomics detection.
Results:
The erectile function of rats and the species diversity of intestinal microbiota in the HFD group was significantly lower, and the characteristics of the intestinal microbiota community structure were also significantly different between the two groups. The erectile function of rats in the HFD-FMT group was significantly lower than that of rats in the ND-FMT group. The characteristics of the intestinal microbiota community structure were significantly different. In the HFD-FMT group, 27 metabolites were significantly different and they were mainly involved in the several inflammation-related pathways.
Conclusions
Intestinal microbiota disorders induced by HFD can damage the intestinal barrier of rats, change the serum metabolic profile, induce low-grade inflammation and apoptosis in the corpus cavernosum of the penis, and lead to ED.
2.The Role of Gut Microbiota in Male Erectile Dysfunction of Rats
Zhunan XU ; Shangren WANG ; Chunxiang LIU ; Jiaqi KANG ; Yang PAN ; Zhexin ZHANG ; Hang ZHOU ; Mingming XU ; Xia LI ; Haoyu WANG ; Shuai NIU ; Li LIU ; Daqing SUN ; Xiaoqiang LIU
The World Journal of Men's Health 2025;43(1):213-227
Purpose:
Erectile dysfunction (ED) is a common male sexual dysfunction. Gut microbiota plays an important role in various diseases. To investigate the effects and mechanisms of intestinal flora dysregulation induced by high-fat diet (HFD) on erectile function.
Materials and Methods:
Male Sprague–Dawley rats aged 8 weeks were randomly divided into the normal diet (ND) and HFD groups. After 24 weeks, a measurement of erectile function was performed. We performed 16S rRNA sequencing of stool samples. Then, we established fecal microbiota transplantation (FMT) rat models by transplanting fecal microbiota from rats of ND group and HFD group to two new groups of rats respectively. After 24 weeks, erectile function of the rats was evaluated and 16S rRNA sequencing was performed, and serum samples were collected for the untargeted metabolomics detection.
Results:
The erectile function of rats and the species diversity of intestinal microbiota in the HFD group was significantly lower, and the characteristics of the intestinal microbiota community structure were also significantly different between the two groups. The erectile function of rats in the HFD-FMT group was significantly lower than that of rats in the ND-FMT group. The characteristics of the intestinal microbiota community structure were significantly different. In the HFD-FMT group, 27 metabolites were significantly different and they were mainly involved in the several inflammation-related pathways.
Conclusions
Intestinal microbiota disorders induced by HFD can damage the intestinal barrier of rats, change the serum metabolic profile, induce low-grade inflammation and apoptosis in the corpus cavernosum of the penis, and lead to ED.
3.The Role of Gut Microbiota in Male Erectile Dysfunction of Rats
Zhunan XU ; Shangren WANG ; Chunxiang LIU ; Jiaqi KANG ; Yang PAN ; Zhexin ZHANG ; Hang ZHOU ; Mingming XU ; Xia LI ; Haoyu WANG ; Shuai NIU ; Li LIU ; Daqing SUN ; Xiaoqiang LIU
The World Journal of Men's Health 2025;43(1):213-227
Purpose:
Erectile dysfunction (ED) is a common male sexual dysfunction. Gut microbiota plays an important role in various diseases. To investigate the effects and mechanisms of intestinal flora dysregulation induced by high-fat diet (HFD) on erectile function.
Materials and Methods:
Male Sprague–Dawley rats aged 8 weeks were randomly divided into the normal diet (ND) and HFD groups. After 24 weeks, a measurement of erectile function was performed. We performed 16S rRNA sequencing of stool samples. Then, we established fecal microbiota transplantation (FMT) rat models by transplanting fecal microbiota from rats of ND group and HFD group to two new groups of rats respectively. After 24 weeks, erectile function of the rats was evaluated and 16S rRNA sequencing was performed, and serum samples were collected for the untargeted metabolomics detection.
Results:
The erectile function of rats and the species diversity of intestinal microbiota in the HFD group was significantly lower, and the characteristics of the intestinal microbiota community structure were also significantly different between the two groups. The erectile function of rats in the HFD-FMT group was significantly lower than that of rats in the ND-FMT group. The characteristics of the intestinal microbiota community structure were significantly different. In the HFD-FMT group, 27 metabolites were significantly different and they were mainly involved in the several inflammation-related pathways.
Conclusions
Intestinal microbiota disorders induced by HFD can damage the intestinal barrier of rats, change the serum metabolic profile, induce low-grade inflammation and apoptosis in the corpus cavernosum of the penis, and lead to ED.
4.The Role of Gut Microbiota in Male Erectile Dysfunction of Rats
Zhunan XU ; Shangren WANG ; Chunxiang LIU ; Jiaqi KANG ; Yang PAN ; Zhexin ZHANG ; Hang ZHOU ; Mingming XU ; Xia LI ; Haoyu WANG ; Shuai NIU ; Li LIU ; Daqing SUN ; Xiaoqiang LIU
The World Journal of Men's Health 2025;43(1):213-227
Purpose:
Erectile dysfunction (ED) is a common male sexual dysfunction. Gut microbiota plays an important role in various diseases. To investigate the effects and mechanisms of intestinal flora dysregulation induced by high-fat diet (HFD) on erectile function.
Materials and Methods:
Male Sprague–Dawley rats aged 8 weeks were randomly divided into the normal diet (ND) and HFD groups. After 24 weeks, a measurement of erectile function was performed. We performed 16S rRNA sequencing of stool samples. Then, we established fecal microbiota transplantation (FMT) rat models by transplanting fecal microbiota from rats of ND group and HFD group to two new groups of rats respectively. After 24 weeks, erectile function of the rats was evaluated and 16S rRNA sequencing was performed, and serum samples were collected for the untargeted metabolomics detection.
Results:
The erectile function of rats and the species diversity of intestinal microbiota in the HFD group was significantly lower, and the characteristics of the intestinal microbiota community structure were also significantly different between the two groups. The erectile function of rats in the HFD-FMT group was significantly lower than that of rats in the ND-FMT group. The characteristics of the intestinal microbiota community structure were significantly different. In the HFD-FMT group, 27 metabolites were significantly different and they were mainly involved in the several inflammation-related pathways.
Conclusions
Intestinal microbiota disorders induced by HFD can damage the intestinal barrier of rats, change the serum metabolic profile, induce low-grade inflammation and apoptosis in the corpus cavernosum of the penis, and lead to ED.
5.The Role of Gut Microbiota in Male Erectile Dysfunction of Rats
Zhunan XU ; Shangren WANG ; Chunxiang LIU ; Jiaqi KANG ; Yang PAN ; Zhexin ZHANG ; Hang ZHOU ; Mingming XU ; Xia LI ; Haoyu WANG ; Shuai NIU ; Li LIU ; Daqing SUN ; Xiaoqiang LIU
The World Journal of Men's Health 2025;43(1):213-227
Purpose:
Erectile dysfunction (ED) is a common male sexual dysfunction. Gut microbiota plays an important role in various diseases. To investigate the effects and mechanisms of intestinal flora dysregulation induced by high-fat diet (HFD) on erectile function.
Materials and Methods:
Male Sprague–Dawley rats aged 8 weeks were randomly divided into the normal diet (ND) and HFD groups. After 24 weeks, a measurement of erectile function was performed. We performed 16S rRNA sequencing of stool samples. Then, we established fecal microbiota transplantation (FMT) rat models by transplanting fecal microbiota from rats of ND group and HFD group to two new groups of rats respectively. After 24 weeks, erectile function of the rats was evaluated and 16S rRNA sequencing was performed, and serum samples were collected for the untargeted metabolomics detection.
Results:
The erectile function of rats and the species diversity of intestinal microbiota in the HFD group was significantly lower, and the characteristics of the intestinal microbiota community structure were also significantly different between the two groups. The erectile function of rats in the HFD-FMT group was significantly lower than that of rats in the ND-FMT group. The characteristics of the intestinal microbiota community structure were significantly different. In the HFD-FMT group, 27 metabolites were significantly different and they were mainly involved in the several inflammation-related pathways.
Conclusions
Intestinal microbiota disorders induced by HFD can damage the intestinal barrier of rats, change the serum metabolic profile, induce low-grade inflammation and apoptosis in the corpus cavernosum of the penis, and lead to ED.
6.Adolescent anxiety and non-suicidal self-injury behavior: the mediating role of depression and the moderating role of social support
Juexi LI ; Liyuan LI ; Yuxuan GUO ; Xiaoqiang XIAO ; Peiqi TANG ; Ting PU ; Haixi ZUO ; Ting YANG ; Xiaoxia FAN ; Bo ZHOU
Sichuan Mental Health 2025;38(4):357-363
BackgroundNon-suicidal self-injury (NSSI) behavior among adolescents has become a global public health concern. Anxiety and depression are considered key factors influencing NSSI behavior, while social support may play a protective role in alleviating emotional and behavioral issues. However, existing research has primarily focused on the direct impact of individual factors on NSSI behavior, with insufficient exploration of the combined effects of anxiety, depression and social support. ObjectiveTo investigate the direct effect of anxiety on NSSI, the mediating role of depression and the moderating role of social support in relationship between anxiety and NSSI behavior, thus to provide references for the prevention and intervention of NSSI behavior among adolescents. MethodsIn February 2022, a total of 40 820 students in grades 7 to 12 across 10 middle schools in a district of Chengdu were selected as participants, and they were assessed using Generalized Anxiety Disorder Scale-7 item (GAD-7), Patient's Health Questionnaire Depression Scale-9 item (PHQ-9), Social Support Scale for Urban Students (SSSUS) and Adolescent Self-Harm Scale (ASHS). Pearson correlation analysis was conducted to examine the correlations between scale scores among adolescents with NSSI behaviors. Mediation and moderation analyses were performed using Process 3.5 in SPSS, and the significance was tested with bootstrapping. The interaction was visualized by using simple slope analysis. ResultsAmong 34 534 (84.60%) valid respondents, 542 adolescents (1.57%) reported engaging in NSSI behavior. Significant differences in gender, GAD-7 scores, PHQ-9 scores, and SSSUS scores were observed between NSSI behavior group and non-NSSI group (χ²/t=62.889, 71.120, 94.365, -41.464, P<0.01).Adolesents with NSSI showed positive correlations between GAD-7 scores and both ASHS and PHQ-9 scores (r=0.158, 0.166, P<0.01). PHQ-9 scores were positively correlated with ASHS scores (r=0.364, P<0.01), but negatively correlated with SSSUS scores (r=-0.290, P<0.01). SSSUS scores were negatively correlated with ASHS scores (r=-0.247, P<0.01). Depression partially mediated the relationship between anxiety and NSSI behavior, with an effect size of 0.544 (95% CI: 0.162~0.944), accounting for 35.79% of the total effect. Social support moderated the relationship between depression and NSSI bahavior, with an effect value of -0.082 (95% CI: -0.135~-0.029). ConclusionAnxiety not only directly influences NSSI bahavior among adolescents, also indirectly exacerbates it through depression, while social support mitigates the impact of depression on NSSI behavior. [Funded by Youth Project of National Natural Science Foundation of China (number, 82401812); Project of Health Commission of Sichuan Province (number, 24LCYJPT18)]
7.Epidemiological characteristics of influenza in Huzhou City from 2014 to 2023
HU Xiaoqiang ; LIU Yan ; ZHOU Sifan ; ZHANG Zizhe ; WANG Yuda ; SHEN Jianyong
Journal of Preventive Medicine 2025;37(9):959-962
Objective:
To analyze the epidemiological characteristics of influenza in Huzhou City, Zhejiang Province from 2014 to 2023, so as to provide a reference for the improvement of influenza prevention and control measures.
Methods:
The data of influenza cases in Huzhou City from 2014 to 2023 were collected from the China Disease Prevention and Control Information System. Descriptive epidemiological methods were used to analyze the population and regional distribution characteristics of influenza. Annual percent change (APC) and average annual percent change (AAPC) were used to analyze the trend of influenza incidence in Huzhou City from 2014 to 2023.
Results:
A total of 83 277 influenza cases were reported in Huzhou City from 2014 to 2023, with an average annual reported incidence of 268.68/105. From 2014 to 2023, the reported incidence of influenza in Huzhou City showed an upward trend (AAPC=68.748%, P<0.05), with a slow upward trend from 2014 to 2021 (APC=31.055%, P<0.05) and a sharp upward trend from 2021 to 2023 (APC=308.782%, P<0.05). The average annual reported incidence of influenza was 270.72/105 in males and 266.54/105 in females, and the difference was not statistically significant (P>0.05). The average annual reported incidence of influenza in children aged 5-<15 years was 1 502.77/100 000. The reported incidences of influenza in Deqing county, Changxing county, and Anji county were 551.44/100 000, 370.47/100 000, and 175.31/100 000, respectively. From 2014 to 2023, the trends of reported influenza incidence in males, females, residents aged 5-<15 years, and 15-<25 years were consistent with the whole population. The reported influenza incidence in each district (county) from 2021 to 2023 was consistent with Huzhou City from 2021 to 2023.
Conclusions
The reported incidence of influenza in Huzhou City showed an overall upward trend from 2014 to 2023, especially from 2021 to 2023. There was no significant gender difference. The majority of the cases were aged 5-<15 years, and the high incidence areas were Deqing County.
9.Overexpression of multimerin-2 promotes cutaneous melanoma cell invasion and migration and is associated with poor prognosis.
Jinlong PANG ; Xinli ZHAO ; Zhen ZHANG ; Haojie WANG ; Xingqi ZHOU ; Yumei YANG ; Shanshan LI ; Xiaoqiang CHANG ; Feng LI ; Xian LI
Journal of Southern Medical University 2025;45(7):1479-1489
OBJECTIVES:
To investigate the inhibitory effect of multimerin-2 (MMRN2) overexpression on growth and metastasis of cutaneous melanoma cells.
METHODS:
Clinical data of patients with cutaneous melanoma were obtained from the GEO database to compare MMRN2 expressions between normal and tumor tissues. A protein-protein interaction network was constructed using the STRING database, and the intersecting genes from GEPIA2.0 were subjected to GO and KEGG enrichment analysis. The prognostic relevance of MMRN2 expression level was assessed using Cox regression and "timeROC". The correlations of MMRN2 expression level with immune infiltration and angiogenesis-related genes were analyzed using GSCA database and the ssGSEA algorithm. Colony-forming assay, Transwell assay, and wound healing assay were used to examine the changes in proliferation and migration of cultured cutaneous melanoma cells following MMRN2 knockdown. In a mouse model bearing cutaneous melanoma xenograft, the effect of MMRN2 knockdown on vital organ pathologies, survival of the mice and GM-CSF, CXCL9, and TGF‑β1 protein expressions were analyzed.
RESULTS:
MMRN2 was significantly upregulated in metastatic cutaneous melanoma (P<0.001). Protein interaction network analysis identified 15 intersecting genes, which were enriched in endothelium development and cell-cell junctions. In patients with cutaneous melanoma, a high MMRN2 expression was correlated with a poor prognosis, an advanced T stage, a greater Breslow depth, and ulceration (P<0.05). MMRN2 expression level was strongly correlated with 24 immune cell types (P<0.001), fibroblasts, endothelial cells, and expressions of the pro-angiogenic genes (KCNJ8, SLCO2A1, NRP1, and COL3A1; P<0.001). In cultured B16F10 cells, MMRN2 knockdown significantly suppressed cell proliferation, migration and invasion and caused remo-deling of the immunosuppressive microenvironment.
CONCLUSIONS
MMRN2 overexpression drives progression of cutaneous melanoma by enhancing tumor metastasis, angiogenesis and immune evasion, highlighting its potential as a therapeutic target for melanomas.
Humans
;
Melanoma/metabolism*
;
Animals
;
Cell Movement
;
Prognosis
;
Skin Neoplasms/metabolism*
;
Mice
;
Cell Proliferation
;
Neoplasm Invasiveness
;
Cell Line, Tumor
;
Protein Interaction Maps
10.Promotion effect of FOXCUT as a microRNA sponge for miR-24-3p on progression in triple-negative breast cancer through the p38 MAPK signaling pathway
Xiafei YU ; Fangze QIAN ; Xiaoqiang ZHANG ; Yanhui ZHU ; Gao HE ; Junzhe YANG ; Xian WU ; Yi ZHOU ; Li SHEN ; Xiaoyue SHI ; Hongfei ZHANG ; Xiao’an LIU
Chinese Medical Journal 2024;137(1):105-114
Background::Triple-negative breast cancer (TNBC) is a type of highly invasive breast cancer with a poor prognosis. According to new research, long noncoding RNAs (lncRNAs) play a significant role in the progression of cancer. Although the role of lncRNAs in breast cancer has been well reported, few studies have focused on TNBC. This study aimed to explore the biological function and clinical significance of forkhead box C1 promoter upstream transcript (FOXCUT) in triple-negative breast cancer.Methods::Based on a bioinformatic analysis of the cancer genome atlas (TCGA) database, we detected that the lncRNA FOXCUT was overexpressed in TNBC tissues, which was further validated in an external cohort of tissues from the General Surgery Department of the First Affiliated Hospital of Nanjing Medical University. The functions of FOXCUT in proliferation, migration, and invasion were detected in vitro or in vivo. Luciferase assays and RNA immunoprecipitation (RIP) were performed to reveal that FOXCUT acted as a competitive endogenous RNA (ceRNA) for the microRNA miR-24-3p and consequently inhibited the degradation of p38. Results::lncRNA FOXCUT was markedly highly expressed in breast cancer, which was associated with poor prognosis in some cases. Knockdown of FOXCUT significantly inhibited cancer growth and metastasis in vitro or in vivo. Mechanistically, FOXCUT competitively bounded to miR-24-3p to prevent the degradation of p38, which might act as an oncogene in breast cancer. Conclusion::Collectively, this research revealed a novel FOXCUT/miR-24-3p/p38 axis that affected breast cancer progression and suggested that the lncRNA FOXCUT could be a diagnostic marker and therapeutic target for breast cancer.


Result Analysis
Print
Save
E-mail