1.The Role of Gut Microbiota in Male Erectile Dysfunction of Rats
Zhunan XU ; Shangren WANG ; Chunxiang LIU ; Jiaqi KANG ; Yang PAN ; Zhexin ZHANG ; Hang ZHOU ; Mingming XU ; Xia LI ; Haoyu WANG ; Shuai NIU ; Li LIU ; Daqing SUN ; Xiaoqiang LIU
The World Journal of Men's Health 2025;43(1):213-227
Purpose:
Erectile dysfunction (ED) is a common male sexual dysfunction. Gut microbiota plays an important role in various diseases. To investigate the effects and mechanisms of intestinal flora dysregulation induced by high-fat diet (HFD) on erectile function.
Materials and Methods:
Male Sprague–Dawley rats aged 8 weeks were randomly divided into the normal diet (ND) and HFD groups. After 24 weeks, a measurement of erectile function was performed. We performed 16S rRNA sequencing of stool samples. Then, we established fecal microbiota transplantation (FMT) rat models by transplanting fecal microbiota from rats of ND group and HFD group to two new groups of rats respectively. After 24 weeks, erectile function of the rats was evaluated and 16S rRNA sequencing was performed, and serum samples were collected for the untargeted metabolomics detection.
Results:
The erectile function of rats and the species diversity of intestinal microbiota in the HFD group was significantly lower, and the characteristics of the intestinal microbiota community structure were also significantly different between the two groups. The erectile function of rats in the HFD-FMT group was significantly lower than that of rats in the ND-FMT group. The characteristics of the intestinal microbiota community structure were significantly different. In the HFD-FMT group, 27 metabolites were significantly different and they were mainly involved in the several inflammation-related pathways.
Conclusions
Intestinal microbiota disorders induced by HFD can damage the intestinal barrier of rats, change the serum metabolic profile, induce low-grade inflammation and apoptosis in the corpus cavernosum of the penis, and lead to ED.
2.The Role of Gut Microbiota in Male Erectile Dysfunction of Rats
Zhunan XU ; Shangren WANG ; Chunxiang LIU ; Jiaqi KANG ; Yang PAN ; Zhexin ZHANG ; Hang ZHOU ; Mingming XU ; Xia LI ; Haoyu WANG ; Shuai NIU ; Li LIU ; Daqing SUN ; Xiaoqiang LIU
The World Journal of Men's Health 2025;43(1):213-227
Purpose:
Erectile dysfunction (ED) is a common male sexual dysfunction. Gut microbiota plays an important role in various diseases. To investigate the effects and mechanisms of intestinal flora dysregulation induced by high-fat diet (HFD) on erectile function.
Materials and Methods:
Male Sprague–Dawley rats aged 8 weeks were randomly divided into the normal diet (ND) and HFD groups. After 24 weeks, a measurement of erectile function was performed. We performed 16S rRNA sequencing of stool samples. Then, we established fecal microbiota transplantation (FMT) rat models by transplanting fecal microbiota from rats of ND group and HFD group to two new groups of rats respectively. After 24 weeks, erectile function of the rats was evaluated and 16S rRNA sequencing was performed, and serum samples were collected for the untargeted metabolomics detection.
Results:
The erectile function of rats and the species diversity of intestinal microbiota in the HFD group was significantly lower, and the characteristics of the intestinal microbiota community structure were also significantly different between the two groups. The erectile function of rats in the HFD-FMT group was significantly lower than that of rats in the ND-FMT group. The characteristics of the intestinal microbiota community structure were significantly different. In the HFD-FMT group, 27 metabolites were significantly different and they were mainly involved in the several inflammation-related pathways.
Conclusions
Intestinal microbiota disorders induced by HFD can damage the intestinal barrier of rats, change the serum metabolic profile, induce low-grade inflammation and apoptosis in the corpus cavernosum of the penis, and lead to ED.
3.The Role of Gut Microbiota in Male Erectile Dysfunction of Rats
Zhunan XU ; Shangren WANG ; Chunxiang LIU ; Jiaqi KANG ; Yang PAN ; Zhexin ZHANG ; Hang ZHOU ; Mingming XU ; Xia LI ; Haoyu WANG ; Shuai NIU ; Li LIU ; Daqing SUN ; Xiaoqiang LIU
The World Journal of Men's Health 2025;43(1):213-227
Purpose:
Erectile dysfunction (ED) is a common male sexual dysfunction. Gut microbiota plays an important role in various diseases. To investigate the effects and mechanisms of intestinal flora dysregulation induced by high-fat diet (HFD) on erectile function.
Materials and Methods:
Male Sprague–Dawley rats aged 8 weeks were randomly divided into the normal diet (ND) and HFD groups. After 24 weeks, a measurement of erectile function was performed. We performed 16S rRNA sequencing of stool samples. Then, we established fecal microbiota transplantation (FMT) rat models by transplanting fecal microbiota from rats of ND group and HFD group to two new groups of rats respectively. After 24 weeks, erectile function of the rats was evaluated and 16S rRNA sequencing was performed, and serum samples were collected for the untargeted metabolomics detection.
Results:
The erectile function of rats and the species diversity of intestinal microbiota in the HFD group was significantly lower, and the characteristics of the intestinal microbiota community structure were also significantly different between the two groups. The erectile function of rats in the HFD-FMT group was significantly lower than that of rats in the ND-FMT group. The characteristics of the intestinal microbiota community structure were significantly different. In the HFD-FMT group, 27 metabolites were significantly different and they were mainly involved in the several inflammation-related pathways.
Conclusions
Intestinal microbiota disorders induced by HFD can damage the intestinal barrier of rats, change the serum metabolic profile, induce low-grade inflammation and apoptosis in the corpus cavernosum of the penis, and lead to ED.
4.The Role of Gut Microbiota in Male Erectile Dysfunction of Rats
Zhunan XU ; Shangren WANG ; Chunxiang LIU ; Jiaqi KANG ; Yang PAN ; Zhexin ZHANG ; Hang ZHOU ; Mingming XU ; Xia LI ; Haoyu WANG ; Shuai NIU ; Li LIU ; Daqing SUN ; Xiaoqiang LIU
The World Journal of Men's Health 2025;43(1):213-227
Purpose:
Erectile dysfunction (ED) is a common male sexual dysfunction. Gut microbiota plays an important role in various diseases. To investigate the effects and mechanisms of intestinal flora dysregulation induced by high-fat diet (HFD) on erectile function.
Materials and Methods:
Male Sprague–Dawley rats aged 8 weeks were randomly divided into the normal diet (ND) and HFD groups. After 24 weeks, a measurement of erectile function was performed. We performed 16S rRNA sequencing of stool samples. Then, we established fecal microbiota transplantation (FMT) rat models by transplanting fecal microbiota from rats of ND group and HFD group to two new groups of rats respectively. After 24 weeks, erectile function of the rats was evaluated and 16S rRNA sequencing was performed, and serum samples were collected for the untargeted metabolomics detection.
Results:
The erectile function of rats and the species diversity of intestinal microbiota in the HFD group was significantly lower, and the characteristics of the intestinal microbiota community structure were also significantly different between the two groups. The erectile function of rats in the HFD-FMT group was significantly lower than that of rats in the ND-FMT group. The characteristics of the intestinal microbiota community structure were significantly different. In the HFD-FMT group, 27 metabolites were significantly different and they were mainly involved in the several inflammation-related pathways.
Conclusions
Intestinal microbiota disorders induced by HFD can damage the intestinal barrier of rats, change the serum metabolic profile, induce low-grade inflammation and apoptosis in the corpus cavernosum of the penis, and lead to ED.
5.The Role of Gut Microbiota in Male Erectile Dysfunction of Rats
Zhunan XU ; Shangren WANG ; Chunxiang LIU ; Jiaqi KANG ; Yang PAN ; Zhexin ZHANG ; Hang ZHOU ; Mingming XU ; Xia LI ; Haoyu WANG ; Shuai NIU ; Li LIU ; Daqing SUN ; Xiaoqiang LIU
The World Journal of Men's Health 2025;43(1):213-227
Purpose:
Erectile dysfunction (ED) is a common male sexual dysfunction. Gut microbiota plays an important role in various diseases. To investigate the effects and mechanisms of intestinal flora dysregulation induced by high-fat diet (HFD) on erectile function.
Materials and Methods:
Male Sprague–Dawley rats aged 8 weeks were randomly divided into the normal diet (ND) and HFD groups. After 24 weeks, a measurement of erectile function was performed. We performed 16S rRNA sequencing of stool samples. Then, we established fecal microbiota transplantation (FMT) rat models by transplanting fecal microbiota from rats of ND group and HFD group to two new groups of rats respectively. After 24 weeks, erectile function of the rats was evaluated and 16S rRNA sequencing was performed, and serum samples were collected for the untargeted metabolomics detection.
Results:
The erectile function of rats and the species diversity of intestinal microbiota in the HFD group was significantly lower, and the characteristics of the intestinal microbiota community structure were also significantly different between the two groups. The erectile function of rats in the HFD-FMT group was significantly lower than that of rats in the ND-FMT group. The characteristics of the intestinal microbiota community structure were significantly different. In the HFD-FMT group, 27 metabolites were significantly different and they were mainly involved in the several inflammation-related pathways.
Conclusions
Intestinal microbiota disorders induced by HFD can damage the intestinal barrier of rats, change the serum metabolic profile, induce low-grade inflammation and apoptosis in the corpus cavernosum of the penis, and lead to ED.
6.Study on spectrum-effect relationship based on antioxidant activity of Artemisiae Annuae Herba
Liyong LAI ; Tianshuang XIA ; Shengyan XU ; Yiping JIANG ; Xiaoqiang YUE ; Hailiang XIN
Journal of Pharmaceutical Practice and Service 2024;42(5):203-210,216
Objective To screen the pharmacodynamic material basic components of Artemisiae Annuae Herba and study its antioxidant activity in vitro by investigating the spectrum-effect relationship between the HPLC fingerprints of 11 batches of Artemisiae Annuae Herba(dried aerial part of Artemisia annua L.).Methods The determination was performed on Aglient C18 column(250 mm×4.6 mm,5 μm)with mobile phase consisted of 0.2%phosphoric acid solution-Methanol(gradient elution)at the flow rate of 1.0 ml/min.The column temperature was indoor temperature,and detection wavelength was 220 nm,with sample size of 10 μl.Using isochlorogenic acid A as reference,HPLC fingerprints of 11 batches of samples were determined.The common peaks of 11 batches of samples were identified and recorded through TCM chromatographic fingerprint similarity evaluation system(2012 edition).Using scavenging rate of DPPH and ABTS free radical as pharmacodynamic indicators of antioxidant effects,SIMCA 14.1 analysis software was used for PLSR to establish the spectra-effect relationship.Results There were 48 common peaks on 11 batches of sample,11 components were identified as scopoletin,scoparone,isochlorogenic acid B,A,C,luteolin,apigenin,chrysosplenetin,artemisinin,artemisetin and artemisinic acid.The scavenging activity of 11 batches of samples to DPPH and ABTS free radicals was detected.The spectrum-effect relationship showed that isochlorogenic acid A,B,C and scoparone were positively associated with its antioxidant capacity,and variable projection value was greater than 1.It was suggested that these components were the material basis of antioxidant effect in Artemisiae Annuae Herba.Conclusion This study investigates the antioxidant capacity of different substances in Artemisiae Annuae Herba in vitro,and proves that isochlorogenic acid A,B,C and scoparone play a major role for the antioxidant capacity.
7.Machine-learning-based models assist the prediction of pulmonary embolism in autoimmune diseases: A retrospective, multicenter study
Ziwei HU ; Yangyang HU ; Shuoqi ZHANG ; Li DONG ; Xiaoqi CHEN ; Huiqin YANG ; Linchong SU ; Xiaoqiang HOU ; Xia HUANG ; Xiaolan SHEN ; Cong YE ; Wei TU ; Yu CHEN ; Yuxue CHEN ; Shaozhe CAI ; Jixin ZHONG ; Lingli DONG
Chinese Medical Journal 2024;137(15):1811-1822
Background::Pulmonary embolism (PE) is a severe and acute cardiovascular syndrome with high mortality among patients with autoimmune inflammatory rheumatic diseases (AIIRDs). Accurate prediction and timely intervention play a pivotal role in enhancing survival rates. However, there is a notable scarcity of practical early prediction and risk assessment systems of PE in patients with AIIRD.Methods::In the training cohort, 60 AIIRD with PE cases and 180 age-, gender-, and disease-matched AIIRD non-PE cases were identified from 7254 AIIRD cases in Tongji Hospital from 2014 to 2022. Univariable logistic regression (LR) and least absolute shrinkage and selection operator (LASSO) were used to select the clinical features for further training with machine learning (ML) methods, including random forest (RF), support vector machines (SVM), neural network (NN), logistic regression (LR), gradient boosted decision tree (GBDT), classification and regression trees (CART), and C5.0 models. The performances of these models were subsequently validated using a multicenter validation cohort.Results::In the training cohort, 24 and 13 clinical features were selected by univariable LR and LASSO strategies, respectively. The five ML models (RF, SVM, NN, LR, and GBDT) showed promising performances, with an area under the receiver operating characteristic (ROC) curve (AUC) of 0.962-1.000 in the training cohort and 0.969-0.999 in the validation cohort. CART and C5.0 models achieved AUCs of 0.850 and 0.932, respectively, in the training cohort. Using D-dimer as a pre-screening index, the refined C5.0 model achieved an AUC exceeding 0.948 in the training cohort and an AUC above 0.925 in the validation cohort. These results markedly outperformed the use of D-dimer levels alone.Conclusion::ML-based models are proven to be precise for predicting the onset of PE in patients with AIIRD exhibiting clinical suspicion of PE.Trial Registration::Chictr.org.cn: ChiCTR2200059599.
8.Characteristics of Gut Microbiota in Patients with Erectile Dysfunction: A Chinese Pilot Study
Jiaqi KANG ; Qihua WANG ; Shangren WANG ; Yang PAN ; Shuai NIU ; Xia LI ; Li LIU ; Xiaoqiang LIU
The World Journal of Men's Health 2024;42(2):363-372
Purpose:
Little is known about the role of gut microbiota in the pathogenesis of erectile dysfunction (ED). We performed a study to compare taxonomic profiles of gut microbiota of ED and healthy males.
Materials and Methods:
A total of 43 ED patients and 16 healthy controls were enrolled in the study. The 5-item version of the International Index of Erectile Function (IIEF-5) with a cutoff value of 21 was used to evaluate erectile function. All participants underwent nocturnal penile tumescence and rigidity test. Samples of stool were sequenced to determine the gut microbiota.
Results:
We identified a distinct beta diversity of gut microbiome in ED patients by unweighted UniFrac analysis (R2=0.026, p=0.036). Linear discriminant analysis effect size (LEfse) analysis showed Actinomyces was significantly enriched, whereas Coprococcus_1, Lachnospiraceae_FCS020_group, Lactococcus, Ruminiclostridium_5, and Ruminococcaceae_UCG_002 were depleted in ED patients. Actinomyces showed a significant negative correlation with the duration of qualified erection, average maximum rigidity of tip, average maximum rigidity of base, tip tumescence activated unit (TAU), and base TAU. Coprococcus_1, Lachnospiraceae_FCS020_group, Ruminiclostridium_5, and Ruminococcaceae_UCG_002 were significantly correlated with the IIEF-5 score. Ruminiclostridium_5 and Ruminococcaceae_UCG_002 were positively related with average maximum rigidity of tip, average maximum rigidity of base, ΔTumescence of tip, and Tip TAU. Further, a random forest classifier based on the relative abundance of taxa showed good diagnostic efficacy with an area under curve of 0.72.
Conclusions
This pilot study identified evident alterations in the gut microbiome composition of ED patients and found Actinomyces was negatively correlated with erectile function, which may be a key pathogenic bacteria.
9.Mechanism of Artemisia annua L. in GIOP with kidney-yin deficiency based on network pharmacology
Liyong LAI ; Tianshuang XIA ; Xiaoqiang YUE ; Hailiang XIN
Journal of Pharmaceutical Practice 2023;41(11):672-679
Objective To predict and preliminarily verify the potential targets and related signaling pathways of Artemisia annua L. in treating glucocorticoid-induced osteoporosis (GIOP) with kidney-yin deficiency by network pharmacology and in vitro experiments. Methods The pharmacological targets of Artemisia annua L. were obtained from TCMSP database and were converted to gene names through Uniprot database. The target genes of GIOP with kidney-yin deficiency were obtained from GeneCards database, OMIM database and Drugbank database, and the common target genes were obtained by cross analysis with drug target gene. Protein-protein interaction (PPI) network was constructed by String database, and visualization analysis and core targets screening were performed by Cytoscape 3.9.0. All common targets were analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis through Metascape database. Finally, the prediction results were verified by in vitro experiments. Results Ninety-eight targets of Artemisia annua L. to GIOP with kidney-yin deficiency were screened, including 17 core genes. The results of GO and KEGG functional enrichment analysis indicated that Artemisia annua L. treating GIOP with kidney-yin deficiency was related to biological processes such as hormonal response, positive regulation of cell death and extracellular stimulation response, et al, as well as signaling pathways such as PI3K/AKT, AGE/RAGE, MAPK and IL-17 et al. The number of genes enriched in PI3K/AKT signaling pathway was the largest. In vitro experiment results showed that Artemisia annua L. promoted the proliferation of osteoblasts damaged by dexamethasone (DEX), increased alkaline phosphatase activity, activated PI3K/AKT pathway, and promoted the phosphorylation of AKT. Conclusion Artemisia annua L. treating GIOP with kidney-yin deficiency has the characteristics of multi-targets and multi-pathway, which could promote the proliferation and differentiation of osteoblasts through multiple pathways. The PI3K/AKT signaling pathway is an important pathway. Artemisia annua L. treating GIOP with kidney-yin deficiency might be related to its ability to promote the PI3K/AKT signaling pathway and promote the phosphorylation of AKT.
10.Research on mixed teaching platform of pediatric clinical laboratory practice teaching based on the Laboratory Quality Management System
Han JIANG ; Cai WANG ; Han WANG ; Xia RAN ; Ningning WU ; Yu SHI ; Hu DOU ; Dapeng CHEN ; Xiaoqiang LI
Chinese Journal of Medical Education Research 2023;22(6):898-902
Objective:To explore application of mixed teaching platform in the clinical practice teaching of the laboratory medicine in Children's hospitals.Methods:We constructed a mixed online and offline teaching platform based on the Laboratory Quality Management System (LQMS) in the Children's Hospital of Chongqing Medical University. The undergraduates from Batch 2016 ( n=15) and Batch 2018 ( n=12) of College of Laboratory Medicine of Chongqing Medical University were taken as control group and experimental group respectively. Traditional teaching method was adopted by the control group, and the mixed teaching method was adopted by the experimental group. The results of two groups' clinical practice assessment, rate of outstanding students (total score ≥ 90) and rate of satisfaction (score ≥ 90) were compared to evaluate the teaching effect. SPSS 17.0 was used to conduct t-test and Chi-square test. Results:The database of teaching platform includes 68 teaching cases, 198 pieces of courseware, 305 clinical cases and 3 036 atlases. The test bank has accumulated 4 657 tests, covering clinical laboratory, immunology, biochemistry, microbiology and blood transfusion. The results of students in experimental group were significantly better than those of the control group [the score of clinical practice assessment: (85.90±5.04) vs. (78.90±6.75)( P<0.05); rate of outstanding students: 33.3% (4/12) vs. 6.7% (1/15), P>0.05; rate of satisfaction: 86.7% (13/15) vs. 100.0% (12/12) ( P>0.05). Conclusion:The mixed online and offline teaching platform based on the LQMS is highly recognized by students and can significantly improve the effect of clinical practice teaching, which can provide typical medical case teaching at any time and make up for limited case type in children's hospital.

Result Analysis
Print
Save
E-mail