1.Strategies for removing the impurities from bispecific antibodies
Xin DONG ; Guanyue ZHOU ; Jufang SHEN ; Xiaomeng ZHANG
Journal of China Pharmaceutical University 2025;56(3):390-396
Bispecific antibodies have shown significant efficacy in tumor therapy due to their dual targeting ability, but the complexity of their structure leads to the production of various process-related impurities such as host cell proteins, host cell DNA, and Protein A, and product-related impurities such as semi antibodies, 3/4 antibodies, homodimers, bispecific antibodies lacking one Fab arm, and aggregates during the manufacturing process. This paper systematically summarizes downstream purification strategies for dual antibodies, including affinity chromatography, deep filtration, hydroxyapatite chromatography, hydrophobic interaction chromatography, ion exchange chromatography, and multimodal chromatography, to efficiently remove various impurities and provide theoretical support for the purification of dual antibodies.
2.Historical Evolution and Modern Clinical Application of Huoxiang Zhengqisan
Weilu NIU ; Mengjie YANG ; Chengqi LYU ; Cuicui SHEN ; Congcong LI ; Huangchao JIA ; Liyun WANG ; Xuewei LIU ; Mingsan MIAO ; Xiaomeng WANG ; Yawei YAN ; Chunyong LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):156-167
In this study, bibliometric methods were used to systematically investigate the name and origin, the evolution of prescription composition, dose evolution, origin and processing method, decoction method, ancient application, modified application, modern application and other information of Huoxiang Zhengqisan. After research, Huoxiang Zhengqisan, also known as Huoxiang Zhengqitang, was first recorded in Taiping Huimin Hejijufang. The original formula is composed of 41.3 g of Arecae Pericarpium, 41.3 g of Angelicae Dahuricae Radix, 41.3 g of Perilla frutescens(actually Perillae Folium), 41.3 g of Poria, 82.6 g of Pinelliae Rhizoma, 82.6 g of Atractylodis Macrocephalae Rhizoma, 82.6 g of Citri Reticulatae Pericarpium(actually Citri Exocarpium Rubbum), 82.6 g of Magnoliae Officinalis Cortex, 82.6 g of Platycodonis Radix, 123.9 g of Pogostemonis Herba, and 103.25 g of Glycyrrhizae Radix et Rhizoma. In this formula, Magnoliae Officinalis Cortex is processed according to the specifications for ginger-processed products, Glycyrrhizae Radix et Rhizoma is processed according to the specifications for stir-fried products, and other herbs are used in their raw products. The botanical sources of the herbs are consistent with the 2020 edition of Pharmacopoeia of the People's Republic of China. The above herbs are ground into a fine powder with a particle size passing through a No. 5 sieve. For each dose, take 8.26 g of the powdered formula, add 300 mL of water, along with 3 g of Zingiberis Rhizoma Recens and 3 g of Jujubae Fructus, and decoct until reduced to 140 mL. The decoction should be administered hot, with three times daily. To induce sweating, the patient should be kept warm under a quilt, and an additional dose should be prepared and taken if needed. This formula is traditionally used to relieve the exterior and resolve dampness, regulate Qi and harmonize the middle, which is mainly used to treat a series of diseases of digestive and respiratory systems. However, potential adverse reactions, including allergies, purpura and disulfiram-like reactions, should be considered during clinical use. Huoxiang Zhengqisan features a rational composition, extensive clinical application, and strong potential for further research and development.
3.Historical Evolution and Modern Clinical Application of Huoxiang Zhengqisan
Weilu NIU ; Mengjie YANG ; Chengqi LYU ; Cuicui SHEN ; Congcong LI ; Huangchao JIA ; Liyun WANG ; Xuewei LIU ; Mingsan MIAO ; Xiaomeng WANG ; Yawei YAN ; Chunyong LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):156-167
In this study, bibliometric methods were used to systematically investigate the name and origin, the evolution of prescription composition, dose evolution, origin and processing method, decoction method, ancient application, modified application, modern application and other information of Huoxiang Zhengqisan. After research, Huoxiang Zhengqisan, also known as Huoxiang Zhengqitang, was first recorded in Taiping Huimin Hejijufang. The original formula is composed of 41.3 g of Arecae Pericarpium, 41.3 g of Angelicae Dahuricae Radix, 41.3 g of Perilla frutescens(actually Perillae Folium), 41.3 g of Poria, 82.6 g of Pinelliae Rhizoma, 82.6 g of Atractylodis Macrocephalae Rhizoma, 82.6 g of Citri Reticulatae Pericarpium(actually Citri Exocarpium Rubbum), 82.6 g of Magnoliae Officinalis Cortex, 82.6 g of Platycodonis Radix, 123.9 g of Pogostemonis Herba, and 103.25 g of Glycyrrhizae Radix et Rhizoma. In this formula, Magnoliae Officinalis Cortex is processed according to the specifications for ginger-processed products, Glycyrrhizae Radix et Rhizoma is processed according to the specifications for stir-fried products, and other herbs are used in their raw products. The botanical sources of the herbs are consistent with the 2020 edition of Pharmacopoeia of the People's Republic of China. The above herbs are ground into a fine powder with a particle size passing through a No. 5 sieve. For each dose, take 8.26 g of the powdered formula, add 300 mL of water, along with 3 g of Zingiberis Rhizoma Recens and 3 g of Jujubae Fructus, and decoct until reduced to 140 mL. The decoction should be administered hot, with three times daily. To induce sweating, the patient should be kept warm under a quilt, and an additional dose should be prepared and taken if needed. This formula is traditionally used to relieve the exterior and resolve dampness, regulate Qi and harmonize the middle, which is mainly used to treat a series of diseases of digestive and respiratory systems. However, potential adverse reactions, including allergies, purpura and disulfiram-like reactions, should be considered during clinical use. Huoxiang Zhengqisan features a rational composition, extensive clinical application, and strong potential for further research and development.
4.Postnatal state transition of cardiomyocyte as a primary step in heart maturation.
Zheng LI ; Fang YAO ; Peng YU ; Dandan LI ; Mingzhi ZHANG ; Lin MAO ; Xiaomeng SHEN ; Zongna REN ; Li WANG ; Bingying ZHOU
Protein & Cell 2022;13(11):842-862
Postnatal heart maturation is the basis of normal cardiac function and provides critical insights into heart repair and regenerative medicine. While static snapshots of the maturing heart have provided much insight into its molecular signatures, few key events during postnatal cardiomyocyte maturation have been uncovered. Here, we report that cardiomyocytes (CMs) experience epigenetic and transcriptional decline of cardiac gene expression immediately after birth, leading to a transition state of CMs at postnatal day 7 (P7) that was essential for CM subtype specification during heart maturation. Large-scale single-cell analysis and genetic lineage tracing confirm the presence of transition state CMs at P7 bridging immature state and mature states. Silencing of key transcription factor JUN in P1-hearts significantly repressed CM transition, resulting in perturbed CM subtype proportions and reduced cardiac function in mature hearts. In addition, transplantation of P7-CMs into infarcted hearts exhibited cardiac repair potential superior to P1-CMs. Collectively, our data uncover CM state transition as a key event in postnatal heart maturation, which not only provides insights into molecular foundations of heart maturation, but also opens an avenue for manipulation of cardiomyocyte fate in disease and regenerative medicine.
Gene Expression Regulation
;
Heart
;
Myocytes, Cardiac/metabolism*
;
Single-Cell Analysis
;
Transcription Factors/metabolism*
5.Activating transcription factor 4 protects mice against sepsis-induced intestinal injury by regulating gut-resident macrophages differentiation
Zhenliang WEN ; Xi XIONG ; Dechang CHEN ; Lujing SHAO ; Xiaomeng TANG ; Xuan SHEN ; Sheng ZHANG ; Sisi HUANG ; Lidi ZHANG ; Yizhu CHEN ; Yucai ZHANG ; Chunxia WANG ; Jiao LIU
Chinese Medical Journal 2022;135(21):2585-2595
Background::Gut-resident macrophages (gMacs) supplemented by monocytes-to-gMacs differentiation play a critical role in maintaining intestinal homeostasis. Activating transcription factor 4 (ATF4) is involved in immune cell differentiation. We therefore set out to investigate the role of ATF4-regulated monocytes-to-gMacs differentiation in sepsis-induced intestinal injury.Methods::Sepsis was induced in C57BL/6 wild type (WT) mice and Atf4-knockdown ( Atf4+/-) mice by cecal ligation and puncture or administration of lipopolysaccharide (LPS). Colon, peripheral blood mononuclear cells, sera, lung, liver, and mesenteric lymph nodes were collected for flow cytometry, hematoxylin and eosin staining, immunohistochemistry, quantitative reverse transcription polymerase chain reaction, and enzyme-linked immunosorbent assay, respectively. Results::CD64, CD11b, Ly6C, major histocompatibility complex-II (MHC-II), CX3CR1, Ly6G, and SSC were identified as optimal primary markers for detecting the process of monocytes-to-gMacs differentiation in the colon of WT mice. Monocytes-to-gMacs differentiation was impaired in the colon during sepsis and was associated with decreased expression of ATF4 in P1 (Ly6C hi monocytes), the precursor cells of gMacs. Atf4 knockdown exacerbated the impairment of monocytes-to-gMacs differentiation in response to LPS, resulting in a significant reduction of gMacs in the colon. Furthermore, compared with WT mice, Atf4+/- mice exhibited higher pathology scores, increased expression of inflammatory factor genes ( TNF-α, IL-1β), suppressed expression of CD31 and vascular endothelial-cadherin in the colon, and increased translocation of intestinal bacteria to lymph nodes and lungs following exposure to LPS. However, the aggravation of sepsis-induced intestinal injury resulting from Atf4 knockdown was not caused by the enhanced inflammatory effect of Ly6C hi monocytes and gMacs. Conclusion::ATF4, as a novel regulator of monocytes-to-gMacs differentiation, plays a critical role in protecting mice against sepsis-induced intestinal injury, suggesting that ATF4 might be a potential therapeutic target for sepsis treatment.
6.Clinical efficacy of morcellator assisted by transurethral bipolar plasmakinetic enucleation and resction of the prostate in the treatment of benign prostatic hyperplasia
Qingxin ZHANG ; Xiaomeng YIN ; Jin SHEN ; Shuang GUO ; Faqi YU ; Xin JIANG
International Journal of Surgery 2021;48(12):824-828
Objective:To explore the clinical efficacy of morcellator assisted by transurethral bipolar plasmakinetic enucleation and resction of the prostate in the treatment of benign prostatic hyperplasia.Methods:A total of 90 patients with benign prostatic hyperplasia treated in the Department of Urology, Shenyang Fifth People′s Hospital from Apirl 2020 to Apirl 2021 were retrospectively analyzed. They were divided into the experimental group ( n=50) and the control group ( n=40) according to different sugical methods. Among them, patients underwent transurethral plasma anatomical prostatectomy with the aid of morcellator in the experimental group, patients of the control group underwent plasma prostatectomy. The operation time, intraoperative blood loss, the decrease in hemoglobin, postoperative catheter retention, hospitalization time, international prostate symptom score (IPSS) of 3 months after surgery, quality of life score (QOL), maximum urine flow rate(Qmax), residual urine volume (PVR), surgical complications and other related indicators in the two groups were compared. Measurement data were expressed as mean±standard deviation ( Mean± SD), comparison between groups was by t-test; comparison of count data between groups was by Chi-square test. Results:Both groups were successfully treated by transurethral surgery. There were significant difference in the amount of blood loss [(62.11±5.32) mL vs (95.12±10.32) mL], the total operation time[(40.25±12.75) min vs (72.1±13.41) min], postoperative catheter retention[(3.02±0.41) d vs (4.73±1.32) d], hospitalization time[(4.03±0.41) d vs (6.52±0.85) d], the decrease in hemoglobin[(2.65±0.52) g/L vs (4.21±0.85) g/L]( P<0.05); there was no significant difference in the IPSS score(7.36±3.26 vs 8.12±3.56), QOL(2.12±0.32 vs 2.32±0.21), Qmax[(15.47±4.53) mL/s vs (16.23±3.21) mL/s], PVR [(15.25±5.14) mL vs (16.21±5.26) mL], the incidence of complications(6.00% vs 5.00%)( P>0.05). Conclusion:It is safe and feasible to treat benign prostatic hyperplasia by transurethral plasma anatomical prostatectomy assisted by tissue planer, which can significantly improve its clinical efficacy.
7.Longitudinal analysis of myopia and refractive errors screening results in adolescents in a community in Shanghai
ZHU Tianzhu, YUAN Ye, ZHOU Zhihui, HUANG Li, SHEN Huihua, QU Xiaomeng, CHI Sihan
Chinese Journal of School Health 2021;42(6):931-934
Objective:
To understand the longitudinal changes of refractive errors in adolescent myopia screening in the suburb of Shanghai, and to provide reference for targeted measures of myopia prevention and intervention.
Methods:
By using the cluster sampling method, 1 346 students were selected from two primary schools in a town in the suburb of Shanghai. Physical development indicators and refractive examination parameters of non ciliary muscle paralysis, and uncorrected visual acuity in 2017 and 2020 were collected from the Shanghai adolescent refractive development file. Longitudinal change of spherical equivalent (SE) refractive were assessed. A linear regression model was used to examine the relationship between the rate of SE change with characteristics of the students.
Results:
The average annual incidence of myopia was 16.36%, and the SE degrees of the left and right eyes of myopia students decreased by 225 degrees for three years. Girls (right eye Z=-4.33; left eye Z=-3.75, P<0.01), newly-onset myopia and persistent myopia (right eye Z=634.45; left eye Z=638.85, P<0.01) was a key for the rapid progress of refractive power.
Conclusion
The proportion of students with severe low vision is relatively high, and the apparent shifts toward more hyperopia in myopia students call for effective prevention and control programs based on changes in refractive to slow the progression of adolescent myopia.
8.Brain-wide Mapping of Mono-synaptic Afferents to Different Cell Types in the Laterodorsal Tegmentum.
Xiaomeng WANG ; Hongbin YANG ; Libiao PAN ; Sijia HAO ; Xiaotong WU ; Li ZHAN ; Yijun LIU ; Fan MENG ; Huifang LOU ; Ying SHEN ; Shumin DUAN ; Hao WANG
Neuroscience Bulletin 2019;35(5):781-790
The laterodorsal tegmentum (LDT) is a brain structure involved in distinct behaviors including arousal, reward, and innate fear. How environmental stimuli and top-down control from high-order sensory and limbic cortical areas converge and coordinate in this region to modulate diverse behavioral outputs remains unclear. Using a modified rabies virus, we applied monosynaptic retrograde tracing to the whole brain to examine the LDT cell type specific upstream nuclei. The LDT received very strong midbrain and hindbrain afferents and moderate cortical and hypothalamic innervation but weak connections to the thalamus. The main projection neurons from cortical areas were restricted to the limbic lobe, including the ventral orbital cortex (VO), prelimbic, and cingulate cortices. Although different cell populations received qualitatively similar inputs, primarily via afferents from the periaqueductal gray area, superior colliculus, and the LDT itself, parvalbumin-positive (PV) GABAergic cells received preferential projections from local LDT neurons. With regard to the different subtypes of GABAergic cells, a considerable number of nuclei, including those of the ventral tegmental area, central amygdaloid nucleus, and VO, made significantly greater inputs to somatostatin-positive cells than to PV cells. Diverse inputs to the LDT on a system-wide level were revealed.
9. The preliminary report of a registration clinical trial of proton and heavy ion irradiation
Jiade LU ; Ming YE ; Xiaomao GUO ; Shen FU ; F. Michael MOYERS ; Qing ZHANG ; Jingfang MAO ; Lin KONG ; Wen Chien HSI ; Kambiz SHAHNAZI ; Jingfang ZHAO ; Zhen ZHANG ; Xiumei MA ; Songtao LAI ; Xiaomeng ZHANG ; Ningyi MA ; Yunsheng GAO ; Xin CAI ; Xiyin GUAN ; Junhua ZHANG ; Bin WU ; Jingyi CHENG ; Yin-xiang-zi SHENG ; Wei REN ; Jun ZHAO ; Lining SUN ; Guoliang JIANG
Chinese Journal of Oncology 2018;40(1):52-56
Objective:
To verify the safety and efficacy of IONTRIS particle therapy system (IONTRIS) in clinical implementation.
Methods:
Between 6.2014 and 8.2014, a total of 35 patients were enrolled into this trial: 31 males and 4 females with a median age of 69 yrs (range 39-80). Ten patients had locally recurrent head and neck tumors after surgery, 4 cases with thoracic malignancies, 1 case with hepatocellular carcinoma, 1 case with retroperitoneal sarcoma, and 19 cases with non-metastatic prostate carcinomas. Phantom dose verification was mandatory for each field before the start of radiation.
Results:
Twenty-two patients received carbon ion and 13 had proton irradiation. With a median follow-up time of 1 year, all patients were alive. Among the 16 patients with head and neck, thoracic, and abdominal/pelvic tumors, 2, 1, 12, and 1 cases developed complete response, partial response, stable disease, or disease progression, respectively. Progression-free survival rate was 93.8% (15/16). Among the 19 patients with prostate cancer, biological-recurrence free survival was 100%. Particle therapy was well tolerated in all 35 patients. Twenty-five patients (71.4%) experienced 33 grade 1 acute adverse effects, which subsided at 1 year follow-up. Six (17.1%) patients developed grade 1 late adverse effects. No significant change in ECOG or body weight was observed.
Conclusions
IONTRIS is safe and effective for clinical use. However, long term follow-up is needed to observe the late toxicity and long term result.
10.The preliminary report of a registration clinical trial of proton and heavy ion irradiation
Jiade LU ; Ming YE ; Xiaomao GUO ; Shen FU ; F.Michae MOYERS ; Qing ZHANG ; Jingfang MAO ; Lin KONG ; Chien Wen HSI ; Kambiz SHAHNAZI ; Jingfang ZHAO ; Zhen ZHANG ; Xiumei MA ; Songtao LAI ; Xiaomeng ZHANG ; Ningyi MA ; Yunsheng GAO ; Xin CAI ; Xiyin GUAN ; Junhua ZHANG ; Bin WU ; Jingyi CHENG ; Yin?xiang?zi SHENG ; Wei REN ; Jun ZHAO ; Lining SUN ; Guoliang JIANG
Chinese Journal of Oncology 2018;40(1):52-56
Objective To verify the safety and efficacy of IONTRIS particle therapy system ( IONTRIS) in clinical implementation. Methods Between 6.2014 and 8.2014, a total of 35 patients were enrolled into this trial:31 males and 4 females with a median age of 69 yrs ( range 39?80) . Ten patients had locally recurrent head and neck tumors after surgery, 4 cases with thoracic malignancies, 1 case with hepatocellular carcinoma, 1 case with retroperitoneal sarcoma, and 19 cases with non?metastatic prostate carcinomas. Phantom dose verification was mandatory for each field before the start of radiation. Results Twenty?two patients received carbon ion and 13 had proton irradiation. With a median follow?up time of 1 year, all patients were alive. Among the 16 patients with head and neck, thoracic, and abdominal/pelvic tumors, 2, 1, 12, and 1 cases developed complete response, partial response, stable disease, or disease progression, respectively. Progression?free survival rate was 93.8% (15/16). Among the 19 patients with prostate cancer, biological?recurrence free survival was 100%. Particle therapy was well tolerated in all 35 patients. Twenty?five patients (71.4%) experienced 33 grade 1 acute adverse effects, which subsided at 1 year follow?up. Six ( 17.1%) patients developed grade 1 late adverse effects. No significant change in ECOG or body weight was observed. Conclusions IONTRIS is safe and effective for clinical use. However, long term follow?up is needed to observe the late toxicity and long term result.


Result Analysis
Print
Save
E-mail