1.Effect of Serum Containing Zhenwutang on Apoptosis of Myocardial Mast Cells and Mitochondrial Autophagy
Wei TANG ; Meiqun ZHENG ; Xiaolin WANG ; Zhiyong CHEN ; Chi CHE ; Zongqiong LU ; Jiashuai GUO ; Xiaomei ZOU ; Lili XU ; Lin LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):11-21
ObjectiveTo explore the effect of serum containing Zhenwutang on myocardial mast cell apoptosis induced by angiotensin Ⅱ (AngⅡ) and the mechanism of the correlation between apoptosis and mitochondrial autophagy. MethodsIn this experiment, AngⅡ and serum containing Zhenwutang with different concentrations were used to interfere with H9C2 cardiomyocytes for 24 h, and the survival rate of H9C2 cardiomyocytes was detected by cell counting kit-8 (CCK-8) to screen the optimal concentration for the experiment. Enzyme-linked immunosorbent assay (ELISA) was used to detect the content of B-type natriuretic peptide (BNP) in cell culture supernatant, and immunofluorescence was used to detect the cell surface area to verify the construction of the myocardial mast cell model. Subsequently, the experiment was divided into a blank group (20% blank serum), a model group (20% blank serum + 5×10-5 mol·L-1 AngⅡ), low-, medium-, and high-dose (5%, 10% and 20%) serum containing Zhenwutang groups, an autophagy inhibitor group (1×10-4 mol·L-1 3-MA), and autophagy inducer group (1×10-7 mol·L-1 rapamycin). The apoptosis level of H9C2 cells and the changes of mitochondrial membrane potential were detected by flow cytometry. The lysosomal probe (Lyso Tracker) and mitochondrial probe (Mito Tracker) co-localization was employed to detect autophagy. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to detect Caspase-3, Caspase-9, B-cell lymphoma 2 (Bcl-2), Bcl-2-related X protein (Bax), and cytochrome C (Cyt C) in apoptosis-related pathways and the relative mRNA expression of ubiquitin ligase (Parkin), phosphatase and tensin homolog (PTEN)-induced kinase 1 (PINK1), and p62 protein in mitochondrial autophagy-related pathways. Western blot was used to detect cleaved Caspase-3, cleaved Caspase-9, Bax, Bcl-2, and Cyt C in apoptosis-related pathways, phosphorylated ubiquitin ligase (p-Parkin), phosphorylated PTEN-induced kinase 1 (p-PINK1), p62, and Bcl-2 homology domain protein Beclin1 in mitochondrial autophagy-related pathways, and the change of microtubule-associated protein 1 light chain 3 (LC3) Ⅱ/Ⅰ ratio. ResultsCCK-8 showed that when the concentration of AngⅡ was 5×10-5 mol·L-1, the cell activity was the lowest, and there was no cytotoxicity. At this concentration, the surface area of cardiomyocytes was significantly increased (P<0.01), and the content of BNP in the supernatant of culture medium was significantly increased (P<0.05). Therefore, AngⅡ with a concentration of 5×10-5 mol·L-1 was selected for the subsequent modeling of myocardial mast cells. Compared with the blank group, the model group and the autophagy inhibitor 3-MA group had a significantly increased apoptosis rate (P<0.01) and significantly decreased mitochondrial membrane potential (P<0.01). The results of immunofluorescence co-localization showed that compared with the blank group, the model group had a significantly decreased number of red and green fluorescence spots. The results of Real-time PCR showed that compared with that in the blank group, the relative mRNA expression of Bax, Caspase-3, Caspase-9, Cyt C, and p62 in the model group was significantly up-regulated (P<0.01), while the relative mRNA expression of Bcl-2, Parkin, and PINK1 was significantly down-regulated (P<0.01). In addition, the relative protein expression of Bax, cleaved Caspase-3, cleaved Caspase-9, Cyt C, and p62 was significantly up-regulated (P<0.01). The LC3Ⅱ/Ⅰ was significantly decreased, and the relative protein expression of Bcl-2, p-Parkin, p-PINK1, and Beclin1 was significantly down-regulated (P<0.01). Compared with the model group, the serum containing Zhenwutang groups and the autophagy inducer group had significantly decreased apoptosis rate (P<0.01), and the decrease ratio of mitochondrial membrane potential is significantly lowered (P<0.01) in a dose-dependent manner. Additionally, both red and green fluorescence spots became more in these groups. In the 3-MA group, the number of red and green fluorescence spots decreased significantly. The relative mRNA expression of Bax, Caspase-3, Caspase-9, Cyt C, and p62 was significantly down-regulated (P<0.05, P<0.01), while that of Bcl-2, Parkin, and PINK1 was significantly up-regulated (P<0.01). In the serum containing Zhenwutang groups, the relative protein expression levels of Bax, cleaved Caspase-3, cleaved Caspase-9, Cyt C, and p62 were significantly down-regulated (P<0.05,P<0.01). The LC3Ⅱ/Ⅰ was significantly increased, and the relative protein expression levels of Bcl-2, p-Parkin, p-PINK1, and Beclin1 were significantly up-regulated (P<0.01). ConclusionThe serum containing Zhenwutang can reduce the apoptosis of myocardial mast cells and increase mitochondrial autophagy. This is related to the inhibition of intracellular Bax/Bcl-2/Caspase-3 apoptosis pathway and regulation of Parkin/PINK1 mitochondrial autophagy pathway.
2.Analysis on Pharmacodynamic Material Basis and Mechanism of Famous Classical Formula Renshen Wuweizi Tang in Treatment of Spleen and Lung Qi Deficiency Syndrome
Shanshan LI ; Yute ZHONG ; Xiaomei XIANG ; Wei KANG ; Shufan ZHOU ; Ping WANG ; Haiyu XU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(8):31-39
ObjectiveBased on ultra-high performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS/MS), network pharmacology and molecular docking techniques, to explore the pharmacodynamic material basis and mechanism of Renshen Wuweizi Tang in treating spleen-lung Qi deficiency syndrome. MethodsThe chemical components in the decoction of Renshen Wuweizi Tang were systematically characterized and identified by UPLC-Q-TOF-MS/MS, and network pharmacology was used to screen potential active ingredients, collect component targets and gene sets related to spleen-lung Qi deficiency syndrome, and obtain protein interaction relationships through STRING. Cytoscape 3.9.1 was used to construct a "formula-syndrome" association network and calculate topological feature values. Gene ontology(GO) function and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis were performed on core genes to explore potential pharmacodynamic links, the average shortest path between the formula-drug target network and the pharmacodynamic link gene network was calculated to discover dominant pharmacodynamic links, and MCODE plugin was used to identify core gene clusters from the dominant pharmacodynamic links, which were validated using Gene Expression Omnibus(GEO), and molecular docking was performed between key components and core targets. ResultsOne hundred and thirty-seven components were identified in the negative ion mode, and eighty components were identified in the positive ion mode. After deduplication, a total of 185 components were identified, mainly composed of triterpenoid saponins(49) and flavonoids(54). Based on the "formula-syndrome" correlation network analysis, energy metabolism was determined to be the dominant pharmacodynamic link of Renshen Wuweizi Tang in the treatment of spleen-lung Qi deficiency syndrome. The results of molecular docking showed that 7 components(adenosine, atractylenolide Ⅱ, atractylenolide Ⅲ, ginsenoside Rg1, glycyrrhizin B2, glycyrrhizin E2 and campesterol) from 4 medicinal materials(Ginseng Radix et Rhizoma, Atractylodis Macrocephalae Rhizoma, Glycyrrhizae Radix et Rhizoma and Poria) in this formula might regulate energy metabolism by acting on 6 targets, namely cyclic adenosine monophosphate-response element binding protein 1(CREB1), glyceraldehyde-3-phosphate dehydrogenase(GAPDH), interleukin(IL)-6, nuclear transcription factor(NF)-κB1, peroxisome proliferator-activated receptor α(PPARα), and tumor necrosis factor(TNF), thus improving the symptoms of diseases related to spleen-lung Qi deficiency syndrome. ConclusionThis study established a UPLC-Q-TOF-MS/MS for rapid characterization and identification of chemical components in the decoction of Renshen Wuweizi Tang, expanding the understanding of the material composition of this formula, and found that 7 components might act on the key advantageous pharmacodynamic link "energy metabolism" through 6 targets to improve the related symptoms of spleen-lung Qi deficiency syndrome. This can provide a reference for the subsequent exploration of the material benchmark and mechanism of the famous classical formula.
3.Geraniin attenuates isoproterenol-induced cardiac hypertrophy by inhibiting inflammation, oxidative stress and cellular apoptosis
Jiaqi DING ; Shenjie ZHANG ; Qi LI ; Boyu XIA ; Jingjing WU ; Xu LU ; Chao HUANG ; Xiaomei YUAN ; Qingsheng YOU
The Korean Journal of Physiology and Pharmacology 2025;29(3):307-319
Geraniin, a polyphenol derived from the fruit peel of Nephelium lappaceum L., has been shown to possess anti-inflammatory and antioxidant properties in the cardiovascular system. The present study explored whether geraniin could protect against an isoproterenol (ISO)-induced cardiac hypertrophy model. Mice in the ISO group received an intraperitoneal injection of ISO (5 mg/kg) once daily for 9 days, and the administration group were injected with ISO after 5 days of treatment with geraniin or spironolactone. Potential therapeutic effects and related mechanisms analysed by anatomical coefficients, histopathology, blood biochemical indices, reverse transcription-PCR and immunoblotting. Geraniin decreased the cardiac pathologic remodeling and myocardial fibrosis induced by ISO, as evidenced by the modifications to anatomical coefficients, as well as the reduction in collagen I/III á1mRNA and protein expression and cross-sectional area in hypertrophic cardiac tissue. In addition, geraniin treatment reduced ISO-induced increase in the mRNA and protein expression levels of interleukin (IL)-6, IL-1β and tumor necrosis factor-α, whereas ISO-induced IL-10 showed the opposite behaviour in hypertrophic cardiac tissue.Further analysis showed that geraniin partially reversed the ISO-induced increase in malondialdehyde and nitric oxide, and the ISO-induced decrease in glutathione, superoxide dismutase and glutathione. Furthermore, it suppressed the ISO-induced cellular apoptosis of hypertrophic cardiac tissue, as evidenced by the decrease in Bcell lymphoma-2 (Bcl-2)-associated X/caspase-3/caspase-9 expression, increase in Bcl-2 expression, and decrease in TdT-mediated dUTP nick-end labeling-positive cells.These findings suggest that geraniin can attenuate ISO-induced cardiac hypertrophy by inhibiting inflammation, oxidative stress and cellular apoptosis.
4.Geraniin attenuates isoproterenol-induced cardiac hypertrophy by inhibiting inflammation, oxidative stress and cellular apoptosis
Jiaqi DING ; Shenjie ZHANG ; Qi LI ; Boyu XIA ; Jingjing WU ; Xu LU ; Chao HUANG ; Xiaomei YUAN ; Qingsheng YOU
The Korean Journal of Physiology and Pharmacology 2025;29(3):307-319
Geraniin, a polyphenol derived from the fruit peel of Nephelium lappaceum L., has been shown to possess anti-inflammatory and antioxidant properties in the cardiovascular system. The present study explored whether geraniin could protect against an isoproterenol (ISO)-induced cardiac hypertrophy model. Mice in the ISO group received an intraperitoneal injection of ISO (5 mg/kg) once daily for 9 days, and the administration group were injected with ISO after 5 days of treatment with geraniin or spironolactone. Potential therapeutic effects and related mechanisms analysed by anatomical coefficients, histopathology, blood biochemical indices, reverse transcription-PCR and immunoblotting. Geraniin decreased the cardiac pathologic remodeling and myocardial fibrosis induced by ISO, as evidenced by the modifications to anatomical coefficients, as well as the reduction in collagen I/III á1mRNA and protein expression and cross-sectional area in hypertrophic cardiac tissue. In addition, geraniin treatment reduced ISO-induced increase in the mRNA and protein expression levels of interleukin (IL)-6, IL-1β and tumor necrosis factor-α, whereas ISO-induced IL-10 showed the opposite behaviour in hypertrophic cardiac tissue.Further analysis showed that geraniin partially reversed the ISO-induced increase in malondialdehyde and nitric oxide, and the ISO-induced decrease in glutathione, superoxide dismutase and glutathione. Furthermore, it suppressed the ISO-induced cellular apoptosis of hypertrophic cardiac tissue, as evidenced by the decrease in Bcell lymphoma-2 (Bcl-2)-associated X/caspase-3/caspase-9 expression, increase in Bcl-2 expression, and decrease in TdT-mediated dUTP nick-end labeling-positive cells.These findings suggest that geraniin can attenuate ISO-induced cardiac hypertrophy by inhibiting inflammation, oxidative stress and cellular apoptosis.
5.Geraniin attenuates isoproterenol-induced cardiac hypertrophy by inhibiting inflammation, oxidative stress and cellular apoptosis
Jiaqi DING ; Shenjie ZHANG ; Qi LI ; Boyu XIA ; Jingjing WU ; Xu LU ; Chao HUANG ; Xiaomei YUAN ; Qingsheng YOU
The Korean Journal of Physiology and Pharmacology 2025;29(3):307-319
Geraniin, a polyphenol derived from the fruit peel of Nephelium lappaceum L., has been shown to possess anti-inflammatory and antioxidant properties in the cardiovascular system. The present study explored whether geraniin could protect against an isoproterenol (ISO)-induced cardiac hypertrophy model. Mice in the ISO group received an intraperitoneal injection of ISO (5 mg/kg) once daily for 9 days, and the administration group were injected with ISO after 5 days of treatment with geraniin or spironolactone. Potential therapeutic effects and related mechanisms analysed by anatomical coefficients, histopathology, blood biochemical indices, reverse transcription-PCR and immunoblotting. Geraniin decreased the cardiac pathologic remodeling and myocardial fibrosis induced by ISO, as evidenced by the modifications to anatomical coefficients, as well as the reduction in collagen I/III á1mRNA and protein expression and cross-sectional area in hypertrophic cardiac tissue. In addition, geraniin treatment reduced ISO-induced increase in the mRNA and protein expression levels of interleukin (IL)-6, IL-1β and tumor necrosis factor-α, whereas ISO-induced IL-10 showed the opposite behaviour in hypertrophic cardiac tissue.Further analysis showed that geraniin partially reversed the ISO-induced increase in malondialdehyde and nitric oxide, and the ISO-induced decrease in glutathione, superoxide dismutase and glutathione. Furthermore, it suppressed the ISO-induced cellular apoptosis of hypertrophic cardiac tissue, as evidenced by the decrease in Bcell lymphoma-2 (Bcl-2)-associated X/caspase-3/caspase-9 expression, increase in Bcl-2 expression, and decrease in TdT-mediated dUTP nick-end labeling-positive cells.These findings suggest that geraniin can attenuate ISO-induced cardiac hypertrophy by inhibiting inflammation, oxidative stress and cellular apoptosis.
6.Geraniin attenuates isoproterenol-induced cardiac hypertrophy by inhibiting inflammation, oxidative stress and cellular apoptosis
Jiaqi DING ; Shenjie ZHANG ; Qi LI ; Boyu XIA ; Jingjing WU ; Xu LU ; Chao HUANG ; Xiaomei YUAN ; Qingsheng YOU
The Korean Journal of Physiology and Pharmacology 2025;29(3):307-319
Geraniin, a polyphenol derived from the fruit peel of Nephelium lappaceum L., has been shown to possess anti-inflammatory and antioxidant properties in the cardiovascular system. The present study explored whether geraniin could protect against an isoproterenol (ISO)-induced cardiac hypertrophy model. Mice in the ISO group received an intraperitoneal injection of ISO (5 mg/kg) once daily for 9 days, and the administration group were injected with ISO after 5 days of treatment with geraniin or spironolactone. Potential therapeutic effects and related mechanisms analysed by anatomical coefficients, histopathology, blood biochemical indices, reverse transcription-PCR and immunoblotting. Geraniin decreased the cardiac pathologic remodeling and myocardial fibrosis induced by ISO, as evidenced by the modifications to anatomical coefficients, as well as the reduction in collagen I/III á1mRNA and protein expression and cross-sectional area in hypertrophic cardiac tissue. In addition, geraniin treatment reduced ISO-induced increase in the mRNA and protein expression levels of interleukin (IL)-6, IL-1β and tumor necrosis factor-α, whereas ISO-induced IL-10 showed the opposite behaviour in hypertrophic cardiac tissue.Further analysis showed that geraniin partially reversed the ISO-induced increase in malondialdehyde and nitric oxide, and the ISO-induced decrease in glutathione, superoxide dismutase and glutathione. Furthermore, it suppressed the ISO-induced cellular apoptosis of hypertrophic cardiac tissue, as evidenced by the decrease in Bcell lymphoma-2 (Bcl-2)-associated X/caspase-3/caspase-9 expression, increase in Bcl-2 expression, and decrease in TdT-mediated dUTP nick-end labeling-positive cells.These findings suggest that geraniin can attenuate ISO-induced cardiac hypertrophy by inhibiting inflammation, oxidative stress and cellular apoptosis.
7.Geraniin attenuates isoproterenol-induced cardiac hypertrophy by inhibiting inflammation, oxidative stress and cellular apoptosis
Jiaqi DING ; Shenjie ZHANG ; Qi LI ; Boyu XIA ; Jingjing WU ; Xu LU ; Chao HUANG ; Xiaomei YUAN ; Qingsheng YOU
The Korean Journal of Physiology and Pharmacology 2025;29(3):307-319
Geraniin, a polyphenol derived from the fruit peel of Nephelium lappaceum L., has been shown to possess anti-inflammatory and antioxidant properties in the cardiovascular system. The present study explored whether geraniin could protect against an isoproterenol (ISO)-induced cardiac hypertrophy model. Mice in the ISO group received an intraperitoneal injection of ISO (5 mg/kg) once daily for 9 days, and the administration group were injected with ISO after 5 days of treatment with geraniin or spironolactone. Potential therapeutic effects and related mechanisms analysed by anatomical coefficients, histopathology, blood biochemical indices, reverse transcription-PCR and immunoblotting. Geraniin decreased the cardiac pathologic remodeling and myocardial fibrosis induced by ISO, as evidenced by the modifications to anatomical coefficients, as well as the reduction in collagen I/III á1mRNA and protein expression and cross-sectional area in hypertrophic cardiac tissue. In addition, geraniin treatment reduced ISO-induced increase in the mRNA and protein expression levels of interleukin (IL)-6, IL-1β and tumor necrosis factor-α, whereas ISO-induced IL-10 showed the opposite behaviour in hypertrophic cardiac tissue.Further analysis showed that geraniin partially reversed the ISO-induced increase in malondialdehyde and nitric oxide, and the ISO-induced decrease in glutathione, superoxide dismutase and glutathione. Furthermore, it suppressed the ISO-induced cellular apoptosis of hypertrophic cardiac tissue, as evidenced by the decrease in Bcell lymphoma-2 (Bcl-2)-associated X/caspase-3/caspase-9 expression, increase in Bcl-2 expression, and decrease in TdT-mediated dUTP nick-end labeling-positive cells.These findings suggest that geraniin can attenuate ISO-induced cardiac hypertrophy by inhibiting inflammation, oxidative stress and cellular apoptosis.
8.Herbal Textual Research on Stemonae Radix in Famous Classical Formulas
Gang XU ; Li AN ; Xiaomei WANG ; Erhuan WANG ; Yichen YANG ; Cunde MA ; Yang YANG ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):241-251
This article systematically reviews and verifies the historical evolution of Stemonae Radix from the aspects of name, origin, harvesting and processing, quality and others by consulting ancient and modern literature, in order to provide reference for the development and utilization of famous classical formulas containing this medicinal herb. Stemonae Radix has a long history of application, and it derives its name from its distinctive growth pattern, featuring clusters of ten to several dozen underground tuberous roots. This morphology resembles that of certain plants in the genus Asparagus, leading to historical instances where tuberous roots from genus Asparagus were mistakenly used as Stemonae Radix. After the research, it can be concluded that Stemonae Radix was first recorded in Mingyi Bielu, and throughout history, Baidu has been recognized as its official name, though it also bears alternative names such as Baibing, Pofucao and Ye Tianmendong. The mainstream sources used throughout history have been the dried tuberous roots of Stemona sessilifolia, S. japonica or S. tuberosa from the family Stemonaceae. This aligns with the 2025 edition of Pharmacopoeia of the People's Republic of China(hereinafter referred to as Chinese Pharmacopoeia). Additionally, Asparagus filicinus and A. officinalis from the genus Asparagus are common sources of confusion with Stemonae Radix. The three primitive plants are mainly distributed in the Yangtze River basin and southern China, exhibiting a wide distribution. Historically, wild harvesting was predominant, but cultivation is now established. In ancient times, the harvesting time was mostly in the second, third, and eighth lunar months, when roots were harvested and dried. Nowadays, it is more common to pick and excavate in the spring and autumn seasons. After excavation, the roots are washed, fibrous roots removed, briefly blanched in boiling water or steamed until no white core remains, and then sun-dried or oven-dried. In ancient times, the processing of Stemonae Radix primarily involved roasting(stir-frying), wine roasting, or raw materials. Modern mainstream processing specifications include two types of raw and honey-roasted products. In terms of quality evaluation of the medicinal materials, ancient criteria of "preferring plump and moist roots" align with modern requirement favoring "thick, robust stems with firm texture". Evaluating quality with authenticity, since the Song dynasty, it has been highly praised to produce in Chuzhou and Hengyang as the best. It was an ancient method of fixing the production area to stabilize the medicinal origin, reflecting the ancient recognition of the therapeutic efficacy of plants belonging to the genus Stemona. The main functions of Stemonae Radix remain consistent throughout history, including relieving coughs, eliminating phlegm and parasites. Based on the research results, it is recommended that when developing famous classical formulas containing the medicinal material Stemonae Radix, the botanical source specified in the 2025 edition of Chinese Pharmacopoeia should be selected. The specific species can be determined according to the distribution of resources and the main production areas, and the origin and corresponding botanical source should be fixed. Processing methods should be chosen based on the prescription requirements. It is recommended to use raw products without specified requirements.
9.Herbal Textual Research on Stemonae Radix in Famous Classical Formulas
Gang XU ; Li AN ; Xiaomei WANG ; Erhuan WANG ; Yichen YANG ; Cunde MA ; Yang YANG ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):241-251
This article systematically reviews and verifies the historical evolution of Stemonae Radix from the aspects of name, origin, harvesting and processing, quality and others by consulting ancient and modern literature, in order to provide reference for the development and utilization of famous classical formulas containing this medicinal herb. Stemonae Radix has a long history of application, and it derives its name from its distinctive growth pattern, featuring clusters of ten to several dozen underground tuberous roots. This morphology resembles that of certain plants in the genus Asparagus, leading to historical instances where tuberous roots from genus Asparagus were mistakenly used as Stemonae Radix. After the research, it can be concluded that Stemonae Radix was first recorded in Mingyi Bielu, and throughout history, Baidu has been recognized as its official name, though it also bears alternative names such as Baibing, Pofucao and Ye Tianmendong. The mainstream sources used throughout history have been the dried tuberous roots of Stemona sessilifolia, S. japonica or S. tuberosa from the family Stemonaceae. This aligns with the 2025 edition of Pharmacopoeia of the People's Republic of China(hereinafter referred to as Chinese Pharmacopoeia). Additionally, Asparagus filicinus and A. officinalis from the genus Asparagus are common sources of confusion with Stemonae Radix. The three primitive plants are mainly distributed in the Yangtze River basin and southern China, exhibiting a wide distribution. Historically, wild harvesting was predominant, but cultivation is now established. In ancient times, the harvesting time was mostly in the second, third, and eighth lunar months, when roots were harvested and dried. Nowadays, it is more common to pick and excavate in the spring and autumn seasons. After excavation, the roots are washed, fibrous roots removed, briefly blanched in boiling water or steamed until no white core remains, and then sun-dried or oven-dried. In ancient times, the processing of Stemonae Radix primarily involved roasting(stir-frying), wine roasting, or raw materials. Modern mainstream processing specifications include two types of raw and honey-roasted products. In terms of quality evaluation of the medicinal materials, ancient criteria of "preferring plump and moist roots" align with modern requirement favoring "thick, robust stems with firm texture". Evaluating quality with authenticity, since the Song dynasty, it has been highly praised to produce in Chuzhou and Hengyang as the best. It was an ancient method of fixing the production area to stabilize the medicinal origin, reflecting the ancient recognition of the therapeutic efficacy of plants belonging to the genus Stemona. The main functions of Stemonae Radix remain consistent throughout history, including relieving coughs, eliminating phlegm and parasites. Based on the research results, it is recommended that when developing famous classical formulas containing the medicinal material Stemonae Radix, the botanical source specified in the 2025 edition of Chinese Pharmacopoeia should be selected. The specific species can be determined according to the distribution of resources and the main production areas, and the origin and corresponding botanical source should be fixed. Processing methods should be chosen based on the prescription requirements. It is recommended to use raw products without specified requirements.
10. Effects of the proliferation, migration and apoptosis of AHVAC - on gastric cancer MKN-28 cells
Xiaomei HUANG ; Hui ZHI ; Hao CHEN ; Linming LU ; Xiaoqun ZHU ; Lizhen WANG ; Jue ZHOU ; Jinjin PANG ; Jinliang XU
Chinese Journal of Clinical Pharmacology and Therapeutics 2024;29(3):270-276
AIM: To investigate the effects of agkis-trodon halys venom anti-tumor component (AHVAC-) on the biological behavior of gastric cancer MKN-28 cells. METHODS: Gastric cancer MKN-28 cells were treated with the experimental concentrations (5, 10, 15 μg/mL) of AHAVC- for 24 h. Cell proliferation and toxicity assay (cell counting kit-8, CCK-8) was used to detect the inhibition rates of the cells in different concentrations of AHVAC-. The migration ability of the cells was evaluated by wound-healing and Transwell assay. The apoptosis were observed by laser confocal microscopy with annexin V-mCherry/DAPI double staining, and the apoptosis rates were analyzed by flow cytometry with annexin V-FITC/PI double fluorescence staining. The protein level of Caspease-3 was determined by Western blot. RESULTS: Compared with normal control group, the results of AHVAC- concentration groups showed that with the increase of AHVAC- concentration, the proliferative activity of MN-28 cells decreased gradually (P<0.01), the cell migration ability decreased gradually (P<0.01), and the cell apoptosis rate increased (P<0.05). The expression of apoptosis-related protein Caspease-3 was up-regulated (P<0.01). CONCLUSION: AHVAC- inhibits proliferation and migration of gastric cancer MSN-28 cells and induces apoptosis.

Result Analysis
Print
Save
E-mail