1.Molecular epidemiological characterization of influenza A(H3N2) virus in Fengxian District, Shanghai, in the surveillance year of 2023
Hongwei ZHAO ; Lixin TAO ; Xiaohong XIE ; Yi HU ; Xue ZHAO ; Meihua LIU ; Qingyuan ZHANG ; Lijie LU ; Chen’an LIU ; Mei WU
Shanghai Journal of Preventive Medicine 2025;37(1):18-22
ObjectiveTo understand the epidemiological distribution and gene evolutionary variation of influenza A (H3N2) viruses in Fengxian District, Shanghai, in the surveillance year of 2023, and to provide a reference basis for influenza prevention and control. MethodsThe prevalence of influenza virus in Fengxian District in the 2023 influenza surveillance year (April 2023‒March 2024) was analyzed. The hemagglutinin (HA) gene, neuraminidase (NA) gene, and amino acid sequences of 75 strains of H3N2 influenza viruses were compared with the vaccine reference strain for similarity matching and phylogenetic evolutionary analysis, in addition to an analysis of gene characterization and variation. ResultsIn Fengxian District, there was a mixed epidemic of H3N2 and H1N1 in the spring of 2023, with H3N2 being the predominant subtype in the second half of the year, and Victoria B becoming the predominant subtype in the spring of 2024. A total of 75 influenza strains of H3N2 with HA and NA genes were distributed in the 3C.2a1b.2a.2a.2a.3a.1 and B.4 branches, with overall similarity to the reference strain of the 2024 vaccine higher than that of the reference strain of the 2022 and 2023 vaccine. Compared with the 2023 vaccine reference strain, three antigenic sites and one receptor binding site were changed in HA, with three glycosylation sites reduced and two glycosylation sites added; where as in NA seven antigenic sites and the 222nd resistance site changed with two glycosylation sites reduced. ConclusionThe risk of antigenic variation and drug resistance of H3N2 in this region is high, and it is necessary to strengthen the publicity and education on the 2024 influenza vaccine and long-term monitoring of influenza virus prevalence and variation levels.
2.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
3.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
4.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
5.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
6.Pathogen spectrum of diarrheal disease surveillance in Fengxian District, Shanghai, 2013‒2023
Meihua LIU ; Yuan ZHUANG ; Xiaohong XIE ; Hongwei ZHAO ; Yuan SHI ; Lijuan DING ; Yi HU ; Lixin TAO
Shanghai Journal of Preventive Medicine 2025;37(4):336-341
ObjectiveTo investigate the pathogenic spectrum and epidemiological characteristics of diarrheal disease in Fengxian District of Shanghai, and to provide scientific basis for the prevention and control of diarrheal diseases. MethodsBasic information of the initial adult cases visited diarrheal disease surveillance sentinel hospital in Fengxian District, Shanghai, was collected from August 2013 to 2023, and fecal samples were collected at 1∶5 sampling intervals to isolate and identify 5 kinds of diarrheagenic Escherichia coli (DEC), Salmonella (SAL), Vibrio parahaemolyticus, Campylobacter, Vibrio cholerae, Shigella and Yersinia enterocolitica (YE). Simultaneously, nucleic acid detection was performed for 3 kinds of rotavirus, 2 kinds of norovirus, intestinal adenovirus, astrovirus and sapovirus. ResultsA total of 1 861 cases of newly diagnosed diarrheal disease were reported, with the peak in July to August. Additionally, 704 surveillance samples were detected, with a total positive detection rate of 50.57%. The detection rates of bacterial, viral and mixed infection were 25.14%, 21.02% and 4.40%, respectively. Among the pathogens detected, DEC accounted for the highest (17.61%, 124/704), followed by norovirus (16.48%, 116/704), rotavirus (6.39%, 45/704), SAL (5.97%, 42/704) and Campylobacter (3.84%, 27/704). DEC detected were mainly enteroaggregative Escherichia coli and enterotoxigenic Escherichia coli, with no detection of Vibrio cholerae, Shigella and YE. The highest total pathogen detection rate was observed from June to September, and the detection peaks of norovirus were from March to June and from October to December, whereas that of DEC was from June to October. The detection rate of rotavirus peaked from January to February, but which was not detected between 2020‒2023. The SAL positive rate peak was in September, whereas that of Campylobacter was from July to September. ConclusionThe main pathogens detected in Fengxian District from 2013‒2019 are DEC, norovirus, rotavirus, SAL and Campylobacter. Different pathogens have different detection peaks, with bacteria predominating in summer and viruses in winter and spring. Prevention and control measures should be carried out according to the epidemiological characteristics of different seasons.
7.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
8.The Association between Ophthalmic Artery Doppler Variables and the Severi-ty of Pre-eclampsia:a Meta-analysis
Li DAI ; Xiaohong WEI ; Lingyun LIAO ; Yangxue YIN ; Qin XU ; Shuangshuang XIE ; Rong ZHOU
Journal of Practical Obstetrics and Gynecology 2024;40(2):153-158
Objective:To investigate the association between the Doppler variables of the ophthalmic artery with the severity of preeclampsia(PE).Methods:Systematic literature was searched between January 1995 and March 2023 in PubMed,Web of Science,Embase,and the Cochrane Library.Studies comparing ophthalmic artery Doppler variables,including peak systolic velocity(PSV),end-diastolic velocity(EDV),resistive index(Rl),pulsa-tility index(PI),and peak ratio(PR,the ratio of the flow velocity of the second peak to that of the initial peak)in patients with PE,severe preeclampsia(sPE),and healthy pregnant women were included.The random-effects model was adopted as the method of pooled analysis,and the I2value was used to assess heterogeneity.The pooled standardized mean difference(SMD)with 95%confidence interval(CI)was used to estimate the associa-tion between ophthalmic artery Doppler variables and PE patient's characteristics.Results:Eight retrospective studies were eventually included in this Meta-analysis.Our pooled results suggested that compared with PE ca-ses,sPE patients had lower PI levels(SMD-0.56,95%CI-0.92~-0.20,P=0.000),higher EDV levels(SMD 0.47,95%CI 0.12~0.83,P=0.028)and higher PR levels(SMD0.96,95%CI 0.13~1.78,P=0.023).Howev-er,there was no significant difference between PE and sPE patients about the PSV and RI(P=0.361,P=0.626).Conclusions:This review demonstrates that ophthalmic artery Doppler variables(PI,EDV and PR)could be useful for predicting PE and PE development(especially in identifying sPE),which in turn may help the practitioner in the management of these complicated cases and in taking early necessary precautions.
9.Longitudinal extrauterine growth restriction in extremely preterm infants: current status and prediction model
Xiaofang HUANG ; Qi FENG ; Shuaijun LI ; Xiuying TIAN ; Yong JI ; Ying ZHOU ; Bo TIAN ; Yuemei LI ; Wei GUO ; Shufen ZHAI ; Haiying HE ; Xia LIU ; Rongxiu ZHENG ; Shasha FAN ; Li MA ; Hongyun WANG ; Xiaoying WANG ; Shanyamei HUANG ; Jinyu LI ; Hua XIE ; Xiaoxiang LI ; Pingping ZHANG ; Hua MEI ; Yanju HU ; Ming YANG ; Lu CHEN ; Yajing LI ; Xiaohong GU ; Shengshun QUE ; Xiaoxian YAN ; Haijuan WANG ; Lixia SUN ; Liang ZHANG ; Jiuye GUO
Chinese Journal of Neonatology 2024;39(3):136-144
Objective:To study the current status of longitudinal extrauterine growth restriction (EUGR) in extremely preterm infants (EPIs) and to develop a prediction model based on clinical data from multiple NICUs.Methods:From January 2017 to December 2018, EPIs admitted to 32 NICUs in North China were retrospectively studied. Their general conditions, nutritional support, complications during hospitalization and weight changes were reviewed. Weight loss between birth and discharge > 1SD was defined as longitudinal EUGR. The EPIs were assigned into longitudinal EUGR group and non-EUGR group and their nutritional support and weight changes were compared. The EPIs were randomly assigned into the training dataset and the validation dataset with a ratio of 7∶3. Univariate Cox regression analysis and multiple regression analysis were used in the training dataset to select the independent predictive factors. The best-fitting Nomogram model predicting longitudinal EUGR was established based on Akaike Information Criterion. The model was evaluated for discrimination efficacy, calibration and clinical decision curve analysis.Results:A total of 436 EPIs were included in this study, with a mean gestational age of (26.9±0.9) weeks and a birth weight of (989±171) g. The incidence of longitudinal EUGR was 82.3%(359/436). Seven variables (birth weight Z-score, weight loss, weight growth velocity, the proportion of breast milk ≥75% within 3 d before discharge, invasive mechanical ventilation ≥7 d, maternal antenatal corticosteroids use and bronchopulmonary dysplasia) were selected to establish the prediction model. The area under the receiver operating characteristic curve of the training dataset and the validation dataset were 0.870 (95% CI 0.820-0.920) and 0.879 (95% CI 0.815-0.942), suggesting good discrimination efficacy. The calibration curve indicated a good fit of the model ( P>0.05). The decision curve analysis showed positive net benefits at all thresholds. Conclusions:Currently, EPIs have a high incidence of longitudinal EUGR. The prediction model is helpful for early identification and intervention for EPIs with higher risks of longitudinal EUGR. It is necessary to expand the sample size and conduct prospective studies to optimize and validate the prediction model in the future.
10.Diagnosis and Treatment Strategies for Severe Tumors in the Elderly
Liqiang WANG ; Haiyi DENG ; Ming LIU ; Xinqing LIN ; Xiaohong XIE ; Zhanhong XIE ; Yinyin QIN ; Ming OUYANG ; Chengzhi ZHOU
Herald of Medicine 2024;43(3):365-373
Patients with severe tumors do not refer to the patients with end-stage tumors,but rather to the patients with a performance status(PS)score between 2 and 4 in certain stages due to various reasons,such as acute or chronic comorbidities,tumor itself,or treatment-related adverse events.To these patients,there is a high probability of achieving survival benefit and/or improvement in PS scores after synergistic management of available life-support technologies and anti-tumor therapies based on dynamic and precise testing.Elderly patients with tumors frequently present with one or more chronic illnesses and have poor toler-ance and compliance to treatment.Moreover,their treatment regimens often lack high-quality clinical evidence,making them more susceptible to developing severe tumors.The management of severe tumors in the elderly is based on three basic diagnosis and treatment technologies:dynamic and precise detection,powerful life support technologies,and skillful application of current anti-tumor treatments.In specific clinical practice,the following 7 flexible and individualized treatment strategies should be adopted for different tumor types:1.concurrent management of cancer and comorbidities,2.upgrading and downgrading of anti-tumor drugs based on PS score,3.dynamic accurate detection,4.skillful combinations for increasing efficacy and reducing toxicity,5.complete overview,paying equal attention to systemic therapy and local therapy,6.safety first in medication for the elderly,7.multi-discipli-nary participation,individualized and comprehensive treatment.This article introduced the concept of severe tumors in the elderly and the associated management strategies,to increase awareness and provide feasible guidance for clinical practice.

Result Analysis
Print
Save
E-mail