1.Electrical stimulation induces miR-741-3p to regulate Radil and promote Schwann cell migration
Qing LIU ; Bo GAO ; Xiao YANG ; Yu JIANG ; Pei WANG
Chinese Journal of Tissue Engineering Research 2025;29(19):4038-4043
		                        		
		                        			
		                        			BACKGROUND:More and more animal experiments and clinical studies have confirmed that electrical stimulation can promote the repair of peripheral nerve injury,but the specific mechanism is not yet fully understood. OBJECTIVE:To investigate the effect of electrical stimulation-induced miR-741-3p regulating Radil on Schwann cell migration. METHODS:(1)Twelve male SD rats were randomly divided into electrical stimulation group and control group.The electrical stimulation group received continuous electrical stimulation for 7 days after sciatic nerve compression injury,while the control group was not treated after sciatic nerve compression.The injured nerves were taken on day 7 after operation.The expression difference of miR-741-3p between the two groups was verified by fluorescence in situ hybridization.(2)The target genes of miR-741-3p were predicted by miRDB,TargetScan,and miRWalk databases.(3)Schwann cells were transfected with miR-741-3p mimetic and its control,miR-741-3p inhibitor and its control,Radil siRNA and its control,miR-741-3p inhibitor+Radil siRNA and miR-741-3p inhibitor+siRNA control.The transfection efficiency was detected by RT-PCR.The migration ability of Schwann cells was detected by Transwell chamber. RESULTS AND CONCLUSION:(1)The fluorescence intensity of miR-741-3p in the electrical stimulation group was lower than that in the control group.(2)The results of database prediction showed that 69 genes might be the target genes of miR-741-3p.Radil was one of the predicted target genes,which was mainly involved in cell adhesion and migration.(3)Compared with the miR-741-3p inhibitor control group,the number of Schwann cell migration increased in the miR-741-3p inhibitor group(P<0.05).Compared with the miR-741-3p mimic control group,the number of Schwann cell migration in the miR-741-3p mimic group decreased(P<0.05).Compared with the siRNA control group,the number of Schwann cell migration was decreased in the Radil siRNA group(P<0.05).(4)Compared with miR-741-3p inhibitor control group,the expression level of Radil was increased in miR-741-3p inhibitor group.Compared with miR-741-3p mimic control group,the expression level of Radil was decreased in miR-741-3p mimic group.(5)Compared with miR-741-3p inhibitor+siRNA control group,the number of Schwann cell migration was reduced in miR-741-3p inhibitor+Radil siRNA group(P<0.05).The results showed that electrical stimulation promoted the migration of Schwann cells by down-regulating miR-741-3p and targeting Radil gene.
		                        		
		                        		
		                        		
		                        	
2.The Role and Mechanism of Aerobic Exercise in Enhancing Insulin Sensitivity by Reducing Circulating Glutamate
Xiao-Rui XING ; Qin SUN ; Huan-Yu WANG ; Ruo-Bing FAN ; Ru WANG
Progress in Biochemistry and Biophysics 2025;52(6):1373-1385
		                        		
		                        			
		                        			ObjectiveTo explore the role and potential mechanism of circulating glutamate in enhancing insulin sensitivity by aerobic exercise. This research may provide a novel strategy for preventing metabolic diseases through precise exercise interventions. MethodsTo investigate the effects of elevated circulating glutamate on insulin sensitivity and its potential mechanisms, 18 male C57BL/6 mice aged 6 to 8 weeks were randomly divided into 3 groups: a control group (C), a group receiving 500 mg/kg glutamate supplementation (M), and a group receiving 1 000 mg/kg glutamate supplementation (H). The intervention lasted for 12 weeks, with treatments administered 6 d per week. Following the intervention, an insulin tolerance test (ITT) and a glucose tolerance test (GTT) were conducted. Circulating glutamate levels were measured using a commercial kit, and the activity of the skeletal muscle InsR/IRS1/PI3K/AKT signaling pathway was analyzed via Western blot. To further investigate the role of circulating glutamate in enhancing insulin sensitivity through aerobic exercise, 30 male C57BL/6 mice were randomly assigned to 3 groups: a control group (CS), an exercise intervention group (ES), and an exercise combined with glutamate supplementation group (EG). The ES group underwent treadmill-based aerobic exercise, while the EG group received glutamate supplementation at a dosage of 1 000 mg/kg in addition to aerobic exercise. The intervention lasted for 10 weeks, with sessions occurring 6 d per week, and the same procedures were followed afterward. To further elucidate the mechanism by which glutamate modulates the InsR/IRS1/PI3K/AKT signaling pathway, C2C12 myotubes were initially subjected to graded glutamate treatment (0, 0.5, 1, 3, 5, 10 mmol/L) to determine the optimal concentration for cellular intervention. Subsequently, the cells were divided into 3 groups: a control group (C), a glutamate intervention group (G), and a glutamate combined with MK801 (an NMDA receptor antagonist) intervention group (GK). The G group was treated with 5 mmol/L glutamate, while the GK group received 50 μmol/L MK801 in addition to 5 mmol/L glutamate. After 24 h of intervention, the activity of the InsR/IRS1/PI3K/AKT signaling pathway was analyzed using Western blot. ResultsCompared to the mice in group C, the circulating glutamate levels, the area under curve (AUC) of ITT, and the AUC of GTT in the mice of group H were significantly increased. Additionally, the expression levels of p-InsRβ, IRS1, p-AKT, and p-mTOR proteins in skeletal muscle were significantly downregulated. Compared to the mice in group CS, the circulating glutamate levels, the AUC of ITT, and the AUC of GTT in the mice of group ES were significantly reduced. Additionally, the expression levels of p-InsRβ, IRS1, p-AKT, and p-mTOR proteins in skeletal muscle of group ES mice were significantly upregulated. There were no significant changes observed in the mice of group EG. Compared to the cells in group 0 mmol/L, the expression levels of p-InsRβ, p-IRS1, p-PI3K, and p-AKT proteins in cells of group 5 mmol/L were significantly downregulated. Compared to the cells in group C, the expression levels of p-InsRβ, p-IRS1, p-PI3K, and p-AKT proteins in the cells of group G were significantly downregulated. No significant changes were observed in the cells of group GK. ConclusionLong-term aerobic exercise can improve insulin sensitivity by lowering circulating levels of glutamate. This effect may be associated with the upregulation of the InsR/IRS1/AKT signaling pathway activity in skeletal muscle. Furthermore, glutamate can weaken the activity of the InsR/IRS1/PI3K/AKT signaling pathway in skeletal muscle, potentially by binding to NMDAR expressed in skeletal muscle. 
		                        		
		                        		
		                        		
		                        	
3.Effects of Different Modes in Hypoxic Training on Metabolic Improvements in Obese Individuals: a Systematic Review With Meta-analysis on Randomized Controlled Trail
Jie-Ping WANG ; Xiao-Shi LI ; Ru-Wen WANG ; Yi-Yin ZHANG ; Feng-Zhi YU ; Ru WANG
Progress in Biochemistry and Biophysics 2025;52(6):1587-1604
		                        		
		                        			
		                        			This paper aimed to systematically evaluate the effects of hypoxic training at different fraction of inspired oxygen (FiO2) on body composition, glucose metabolism, and lipid metabolism in obese individuals, and to determine the optimal oxygen concentration range to provide scientific evidence for personalized and precise hypoxic exercise prescriptions. A systematic search was conducted in the Cochrane Library, PubMed, Web of Science, Embase, and CNKI databases for randomized controlled trials and pre-post intervention studies published up to March 31, 2025, involving hypoxic training interventions in obese populations. Meta-analysis was performed using RevMan 5.4 software to assess the effects of different fraction of inspired oxygen (FiO2≤14% vs. FiO2>14%) on BMI, body fat percentage, waist circumference, fasting blood glucose, insulin, HOMA-IR, triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C), with subgroup analyses based on oxygen concentration. A total of 22 studies involving 292 participants were included. Meta-analysis showed that hypoxic training significantly reduced BMI (mean difference (MD)=-2.29,95%CI: -3.42 to -1.17, P<0.000 1), body fat percentage (MD=-2.32, 95%CI: -3.16 to -1.47, P<0.001), waist circumference (MD=-3.79, 95%CI: -6.73 to -0.85, P=0.01), fasting blood glucose (MD=-3.58, 95%CI: -6.23 to -0.93, P=0.008), insulin (MD=-1.60, 95%CI: -2.98 to -0.22, P=0.02), TG (MD=-0.18, 95%CI: -0.25 to -0.12, P<0.001), and LDL-C (MD=-0.25, 95%CI: -0.39 to -0.11, P=0.000 3). Greater improvements were observed under moderate hypoxic conditions with FiO2>14%. Changes in HOMA-IR (MD=-0.74, 95%CI: -1.52 to 0.04,P=0.06) and HDL-C (MD=-0.09, 95%CI: -0.21 to 0.02, P=0.11) were not statistically significant. Hypoxic training can significantly improve body composition, glucose metabolism, and lipid metabolism indicators in obese individuals, with greater benefits observed under moderate hypoxia (FiO>14%). As a key parameter in hypoxic exercise interventions, the precise setting of oxygen concentration is crucial for optimizing intervention outcomes. 
		                        		
		                        		
		                        		
		                        	
4.Xiaoyao Shukun Decoction Treats Sequelae of Pelvic Inflammatory Disease by Regulating Neutrophil Extracellular Traps via PI3K/Akt/mTOR Pathway
Jing PAN ; Bing ZHANG ; Chunxiao DANG ; Jinxiao LI ; Pengfei LIU ; Xiao YU ; Yuchao WANG ; Jinxing LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(15):69-78
		                        		
		                        			
		                        			ObjectiveTo investigate how Xiaoyao Shukun decoction (XYSKD) regulates the formation and release of neutrophil extracellular traps (NETs) via the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway, thereby reducing inflammation, inhibiting the excessive proliferation of fibroblasts in pelvic adhesion tissue, decreasing adhesion and fibrosis, and repairing the tissue damage in sequelae of pelvic inflammatory disease (SPID). MethodsA total of 84 Wistar rats were randomly allocated into seven groups: blank, model, XYSKD (8 mg·kg-1), mTOR agonist (10 mg·kg-1), mTOR agonist + XYSKD (10 mg·kg-1+8 mg·kg-1), mTOR inhibitor (2 mg·kg-1), and mTOR inhibitor + XYSKD (2 mg·kg-1+8 mg·kg-1). The rat model of SPID was constructed by starvation, fatigue, and ascending Escherichia coli infection. After 14 days of drug intervention, the ultrastructure of fibroblasts in the pelvic adhesion tissue was observed by transmission electron microscopy. The general morphology of the uterus, fallopian tube, and ovary was observed by laparotomy. The levels of interleukin-1β (IL-1β), interleukin-17 (IL-17), and tumor necrosis factor-α (TNF-α) in the peritoneal flushing fluid were determined by enzyme-linked immunosorbent assay (ELISA). The expression of myeloperoxidase (MPO) and citrullinated histone 3 (H3) in the fallopian tube was detected by immunofluorescence. Western blot and Real-time quantitative polymerase chain reaction (Real-time PCR) were employed to determine the relative protein and mRNA levels, respectively, of neutrophil elastase (NE), intercellular adhesion molecule-1 (CD54), α-smooth muscle actin (α-SMA), H3, PI3K, and Akt. ResultsCompared with the blank group, the model group presented a large number of collagen fibers in bundles, numerous cytoplasmic folds of fibroblasts, reduced or absent mitochondrial cristae, and disordered and expanded endoplasmic reticulum. By laparotomy, extensive pelvic congestion, connective tissue hyperplasia, thickening and hardening of the tubal end near the uterus, and tubal and ovarian adhesion or cyst were observed in the model group. In addition, the model group showed raised levels of IL-1β, IL-17, and TNF-α in the peritoneal flushing fluid (P<0.01), increased average fluorescence intensities of MPO and H3 (P<0.01), and up-regulated protein and mRNA levels of NE, H3, CD54, PI3K, and Akt (P<0.01). Compared with the model group, the mTOR agonist group showed increased fibroblasts and cytoplasmic folds, absence of mitochondrial cristae, endoplasmic reticulum dilation, and evident collagen fiber hyperplasia. Pelvic adhesions were observed to cause aggravated damage to the uterine, fallopian tube, and ovarian tissues. The levels of IL-1β, IL-17, and TNF-α in the peritoneal lavage fluid elevated (P<0.01) and the average fluorescence intensities of MPO and H3 enhanced (P<0.01) in the mTOR agonist group. In contrast, the XYSKD group and the mTOR inhibitor group showcased decreased fibroblasts and collagen fibers, alleviated mitochondrial crista loss and endoplasmic reticulum dilation, improved morphology and appearance of the uterine, fallopian tube, and ovarian tissues, lowered levels of IL-1β, IL-17, and TNF-α in the peritoneal lavage fluid (P<0.01), decreased average fluorescence intensities of MPO and H3 (P<0.01), and down-regulated protein and mRNA levels of NE, H3, CD54, PI3K, and Akt (P<0.05). Compared with the mTOR agonist group, the mTOR agonist + XYSKD group showed alleviated pathological changes in the pelvic tissue, declined levels of IL-1β, IL-17, and TNF-α (P<0.01), decreased average fluorescence intensities of MPO and H3 (P<0.01), and down-regulated protein levels of NE, H3, CD54, α-SMA, p-PI3K/PI3K, and p-Akt/Akt (P<0.01) and mRNA levels of NE, H3, CD54, α-SMA, PI3K, and Akt (P<0.01). Compared with the mTOR inhibitor group, the mTOR inhibitor + XYSKD group demonstrated reduced pathological severity of the pelvic tissue, reduced levels of IL-1β, IL-17, and TNF-α (P<0.01), decreased average fluorescence intensities of MPO and H3 (P<0.01), and down-regulated protein and mRNA levels of NE and CD54 (P<0.05). ConclusionXYSKD can inhibit the excessive formation and release of NETs via PI3K/Akt/mTOR to ameliorate the inflammatory environment and reduce fibrosis and adhesion of the pelvic tissue, thereby playing a role in the treatment of SPID. It may exert the effects by lowering the levels of IL-1β, IL-17, and TNF-α and down-regulating the expression of NE, H3, CD54, α-SMA, PI3K, and Akt in the pelvic adhesion tissue. 
		                        		
		                        		
		                        		
		                        	
5.A new carrier of targeted drugs for bladder cancer: metal nanoparticles
Xiao YU ; Shenghan XU ; Bo CHEN ; Qiang WANG
Journal of Modern Urology 2025;30(2):174-179
		                        		
		                        			
		                        			The current clinical treatment of bladder cancer (BCa) is mainly surgical treatment,supplemented by postoperative chemotherapy and immunotherapy.However,due to the lack of specificity,targeting and other reasons,the therapeutic effect is not satisfactory.In recent years,it has been found that metal nanoparticles (MNPs) prepared by gold,silver,and so on,as bladder infusion drugs or drug carriers,can not only accurately target BCa cells,but also have high stability and drug release rate,thereby reducing the side-effects of chemotherapy drugs.Based on domestic and foreign studies,this paper reviews the progress of MNPs in the treatment of BCa,including gold,silver,copper and other MNPs,and prospects the trend of bladder perfusion combined with nanomedical drugs.
		                        		
		                        		
		                        		
		                        	
6.Seroprevalence and influencing factors of low-level neutralizing antibodies against SARS-CoV-2 in community residents
Shiying YUAN ; Jingyi ZHANG ; Huanyu WU ; Weibing WANG ; Genming ZHAO ; Xiao YU ; Xiaoying MA ; Min CHEN ; Xiaodong SUN ; Zhuoying HUANG ; Zhonghui MA ; Yaxu ZHENG ; Jian CHEN
Shanghai Journal of Preventive Medicine 2025;37(5):403-409
		                        		
		                        			
		                        			ObjectiveTo understand the seropositivity of neutralizing antibodies (NAb) and low-level NAb against SARS-CoV-2 infection in the community residents, and to explore the impact of COVID-19 vaccination and SARS-CoV-2 infection on the levels of NAb in human serum. MethodsOn the ground of surveillance cohort for acute infectious diseases in community populations in Shanghai, a proportional stratified sampling method was used to enroll the subjects at a 20% proportion for each age group (0‒14, 15‒24, 25‒59, and ≥60 years old). Blood samples collection and serum SARS-CoV-2 NAb concentration testing were conducted from March to April 2023. Low-level NAb were defined as below the 25th percentile of NAb. ResultsA total of 2 230 participants were included, the positive rate of NAb was 97.58%, and the proportion of low-level NAb was 25.02% (558/2 230). Multivariate logistic regression analysis indicated that age, infection history and vaccination status were correlated with low-level NAb (all P<0.05). Individuals aged 60 years and above had the highest risk of low-level NAb. There was a statistically significant interaction between booster vaccination and one single infection (aOR=0.38, 95%CI: 0.19‒0.77). Compared to individuals without vaccination, among individuals infected with SARS-CoV-2 once, both primary immunization (aOR=0.23, 95%CI: 0.16‒0.35) and booster immunization (aOR=0.12, 95%CI: 0.08‒0.17) significantly reduced the risk of low-level NAb; among individuals without infections, only booster immunization (aOR=0.28, 95%CI: 0.14‒0.52) showed a negative correlation with the risk of low-level NAb. ConclusionsThe population aged 60 and above had the highest risk of low-level NAb. Regardless of infection history, a booster immunization could reduce the risk of low-level NAb. It is recommended that eligible individuals , especially the elderly, should get vaccinated in a timely manner to exert the protective role of NAb. 
		                        		
		                        		
		                        		
		                        	
7.Regenerative endodontic procedures for a prematurely erupted maxillary premolar with immature roots and chronic apical periodontitis: a case report and literature review
WANG Xiao ; XIA Shang ; LIU Yan ; YANG Yu' ; e ; LI Hong
Journal of Prevention and Treatment for Stomatological Diseases 2025;33(8):666-671
		                        		
		                        			Objective:
		                        			To investigate treatment strategies for chronic periapical periodontitis in prematurely erupted premolars and provide guidance for managing pulp and periapical diseases in young permanent teeth with immature roots.
		                        		
		                        			Methods:
		                        			A regenerative endodontic procedure (REP) was performed on a prematurely erupted maxillary left first premolar (tooth 24) at Nolla stage Ⅶ with chronic apical periodontitis, following standardized protocols including root canal irrigation, disinfection, and coronal sealing. The case was followed up, and a literature review was conducted.
		                        		
		                        			Results:
		                        			Clinical resolution of symptoms was observed on tooth 24, with sustained root development. After a 20-month follow-up, the tooth had restored biological function. Literature synthesis revealed that periapical infections in prematurely erupted permanent teeth predominently arise from pulp exposure and bacterial infection, with retrograde infection being rare. For young permanent teeth with necrotic pulp, regenerative endodontic procedures has been established as the treatment of choice to promote apical closure and root maturation. The critical steps of regenerative endodontic procedures include thorough disinfection, induced bleeding to form a fibrin scaffold, and coronal sealing to facilitate stem cell recruitment and differentiation.
		                        		
		                        			Conclusion
		                        			Regenerative endodontic procedures represents an effective and viable treatment option for prematurely erupted young permanent teeth with chronic periapical periodontitis.
		                        		
		                        		
		                        		
		                        	
8.The Improvement of Motor Symptoms in Parkinson’s Disease by Exerkines and The Underlying Mechanisms
Jin PENG ; Yu LIU ; Xiao-Hui WANG
Progress in Biochemistry and Biophysics 2025;52(9):2332-2345
		                        		
		                        			
		                        			Parkinson’s disease (PD), the second most common neurodegenerative disease after Alzheimer’s disease, manifests a variety of motor symptoms, such as bradykinesia, resting tremor, rigidity, postural balance disorder, and also presents non-motor symptoms, including cognitive decline, depression, constipation, and sleep disorders. Currently, treatment for PD primarily encompasses pharmacological interventions, with levodopa being the first-line therapy, and non-pharmacological approaches such as deep brain stimulation (DBS). However, both approaches exhibit therapeutic limitations, with potential adverse reactions emerging from long-term use. Levodopa is associated with dyskinesia, while DBS may lead to mental confusion, cognitive decline, and depression. Exercise, as an effective adjuvant strategy for drug treatment of PD, can significantly improve PD motor disorders. Recently, studies have found that the mechanisms of exercise improving PD motor symptoms are associated with exerkines. Exerkine refers to signalling moieties secreted in response to acute and/or chronic exercise. This review mainly summarizes the improvement of PD motor disorders by various exerkines and the underlying mechanisms. Firstly, exercise can trigger the secretion of brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) in the substantia nigra (SN) and the striatum, potentially improving PD. Recent evidence has suggested that both BDNF and GDNF could improve motor symptoms of PD via restoring the number of dopaminergic neurons in the SN and striatum, increasing striatal dopamine contents, and reducing α-synuclein (α-syn) accumulation in the SN. In addition, BDNF also alleviates motor symptoms of PD by enhancing long-term potentiation and increasing the spine density of spiny projection neurons in the striatum, while GDNF by inhibiting neuroinflammation in the SN via suppressing the activation of microglia, reducing interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) expressions, reducing the phosphorylation of inhibitor of nuclear factor kappa Bα (IκBα), and increasing the anti-inflammatory factors IL-10 and transforming growth factor-β (TGF-β). Secondly, exercise, a main trigger for irisin secretion from skeletal muscle, can improve PD motor symptoms by stimulating the irisin/adenosine monophosphate-activated protein kinase (AMPK)/Sirtuin-1 (SIRT1) pathway. Specifically, irisin alleviates motor symptoms in PD through multiple mechanisms, including inhibiting excessive mitochondrial fission by reducing the expressions of dynamin-related protein 1 (Drp1) and mitochondrial fission protein 1 (Fis1), alleviating the apoptosis of dopaminergic neurons by increasing B-cell lymphoma 2 (Bcl-2) expression and reducing Bcl-2-associated X protein (Bax) and caspase 3 expressions, and restoring the number of dopaminergic neurons. Thirdly, new biomarkers of PD (cathepsin B and Fetuin-A) also play roles in PD development. Cathepsin B can promote the clearance of pathogenic α-syn in PD by enhancing the function of lysosomes, including strengthening the lysosomal degradation capacity, elevating the transport rate, and increasing the activity of lysosomal glucocerebrosidase (GCase). Fetuin-A has been demonstrated to improve PD by restoring the number and the morphology of Purkinje cells, which are the only efferent neurons in the cerebellar cortex and play an important role in maintaining motor coordination. This review aims to facilitate a deep understanding of the mechanism by which exercise improves PD motor symptoms and provide a theoretical basis for promotion of exercise in PD. 
		                        		
		                        		
		                        		
		                        	
9.Adolescent Smoking Addiction Diagnosis Based on TI-GNN
Xu-Wen WANG ; Da-Hua YU ; Ting XUE ; Xiao-Jiao LI ; Zhen-Zhen MAI ; Fang DONG ; Yu-Xin MA ; Juan WANG ; Kai YUAN
Progress in Biochemistry and Biophysics 2025;52(9):2393-2405
		                        		
		                        			
		                        			ObjectiveTobacco-related diseases remain one of the leading preventable public health challenges worldwide and are among the primary causes of premature death. In recent years, accumulating evidence has supported the classification of nicotine addiction as a chronic brain disease, profoundly affecting both brain structure and function. Despite the urgency, effective diagnostic methods for smoking addiction remain lacking, posing significant challenges for early intervention and treatment. To address this issue and gain deeper insights into the neural mechanisms underlying nicotine dependence, this study proposes a novel graph neural network framework, termed TI-GNN. This model leverages functional magnetic resonance imaging (fMRI) data to identify complex and subtle abnormalities in brain connectivity patterns associated with smoking addiction. MethodsThe study utilizes fMRI data to construct functional connectivity matrices that represent interaction patterns among brain regions. These matrices are interpreted as graphs, where brain regions are nodes and the strength of functional connectivity between them serves as edges. The proposed TI-GNN model integrates a Transformer module to effectively capture global interactions across the entire brain network, enabling a comprehensive understanding of high-level connectivity patterns. Additionally, a spatial attention mechanism is employed to selectively focus on informative inter-regional connections while filtering out irrelevant or noisy features. This design enhances the model’s ability to learn meaningful neural representations crucial for classification tasks. A key innovation of TI-GNN lies in its built-in causal interpretation module, which aims to infer directional and potentially causal relationships among brain regions. This not only improves predictive performance but also enhances model interpretability—an essential attribute for clinical applications. The identification of causal links provides valuable insights into the neuropathological basis of addiction and contributes to the development of biologically plausible and trustworthy diagnostic tools. ResultsExperimental results demonstrate that the TI-GNN model achieves superior classification performance on the smoking addiction dataset, outperforming several state-of-the-art baseline models. Specifically, TI-GNN attains an accuracy of 0.91, an F1-score of 0.91, and a Matthews correlation coefficient (MCC) of 0.83, indicating strong robustness and reliability. Beyond performance metrics, TI-GNN identifies critical abnormal connectivity patterns in several brain regions implicated in addiction. Notably, it highlights dysregulations in the amygdala and the anterior cingulate cortex, consistent with prior clinical and neuroimaging findings. These regions are well known for their roles in emotional regulation, reward processing, and impulse control—functions that are frequently disrupted in nicotine dependence. ConclusionThe TI-GNN framework offers a powerful and interpretable tool for the objective diagnosis of smoking addiction. By integrating advanced graph learning techniques with causal inference capabilities, the model not only achieves high diagnostic accuracy but also elucidates the neurobiological underpinnings of addiction. The identification of specific abnormal brain networks and their causal interactions deepens our understanding of addiction pathophysiology and lays the groundwork for developing targeted intervention strategies and personalized treatment approaches in the future. 
		                        		
		                        		
		                        		
		                        	
10.The Effect of Fuzheng Huaji Formula (扶正化积方) for Chronic Hepatitis B on Reduction of the Incidence of Liver Cirrhosis and Hepatocellular Carcinoma:A Retrospective Cohort Study
Simiao YU ; Jiahui LI ; Jing JING ; Tingting HE ; Yongqiang SUN ; Liping WANG ; Aozhe ZHANG ; Xiaohe XIAO ; Xia DING ; Ruilin WANG
Journal of Traditional Chinese Medicine 2025;66(3):268-274
		                        		
		                        			
		                        			ObjectiveTo evaluate the clinical efficacy of Fuzheng Huaji Formula (扶正化积方) for chronic hepatitis B to reduce the incidence of liver cirrhosis and hepatocellular carcinoma. MethodsA retrospective cohort study was conducted, collecting medical records of 118 patients with chronic hepatitis B and 234 patients with hepatitis B-related cirrhosis who visited the hospital between January 1, 2014, and December 31, 2018. The use of Fuzheng Huaji Formula was designated as the exposure factor. Patients receiving antiviral treatment for hepatitis B without concurrent Fuzheng Huaji Formula therapy were included in the western medicine group, while those receiving antiviral treatment combined with Fuzheng Huaji Formula for a cumulative treatment lasting longer than 3 months were included in the combined treatment group. The follow-up observation period was five years. Kaplan-Meier survival analysis was used to assess the cumulative incidence of cirrhosis in patients with chronic hepatitis B and the cumulative incidence of hepatocellular carcinoma in patients with hepatitis B-related cirrhosis. Univariate and multivariate Cox regression analyses were employed to examine the factors influencing the occurrence of cirrhosis and hepatocellular carcinoma. ResultsAmong patients with chronic hepatitis B, there were 55 cases in the combined treatment group and 63 cases in the western medicine group; among patients with hepatitis B-related cirrhosis, there were 110 cases in the combined treatment group and 124 cases in the western medicine group. Five-year follow-up outcomes for chronic hepatitis B patients showed that the cumulative incidence of cirrhosis was 5.45% (3/55) in the combined treatment group and 17.46% (11/63) in the western medicine group, with a statistically significant difference between groups (Z = 2.003, P = 0.045). Five-year follow-up outcomes for hepatitis B-related cirrhosis patients showed that the cumulative incidence of hepatocellular carcinoma was 8.18% (9/110) in the combined treatment group and 22.58% (28/124) in the western medicine group, also showing a statistically significant difference (Z = 3.007, P = 0.003). Univariate and multivariate Cox regression analyses indicated that treatment with Fuzheng Huaji Formula is an independent protective factor in preventing the progression of chronic hepatitis B to cirrhosis and the progression of hepatitis B-related cirrhosis to hepatocellular carcinoma (P<0.05). ConclusionCombining Fuzheng Huaji Formula with antiviral therapy for hepatitis B can effectively intervene in the disease progression of chronic hepatitis B, reducing the incidence of cirrhosis and hepatocellular carcinoma. 
		                        		
		                        		
		                        		
		                        	
            

Result Analysis
Print
Save
E-mail