1.Simultaneous TAVI and McKeown for esophageal cancer with severe aortic regurgitation: A case report
Liang CHENG ; Lulu LIU ; Xin XIAO ; Lin LIN ; Mei YANG ; Jingxiu FAN ; Hai YU ; Longqi CHEN ; Yingqiang GUO ; Yong YUAN
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(02):277-280
A 71-year-old male presented with esophageal cancer and severe aortic valve regurgitation. Treatment strategies for such patients are controversial. Considering the risks of cardiopulmonary bypass and potential esophageal cancer metastasis, we successfully performed transcatheter aortic valve implantation and minimally invasive three-incision thoracolaparoscopy combined with radical resection of esophageal cancer (McKeown) simultaneously in the elderly patient who did not require neoadjuvant treatment. This dual minimally invasive procedure took 6 hours and the patient recovered smoothly without any surgical complications.
2.Effect Analysis of Different Interventions to Improve Neuroinflammation in The Treatment of Alzheimer’s Disease
Jiang-Hui SHAN ; Chao-Yang CHU ; Shi-Yu CHEN ; Zhi-Cheng LIN ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Chu-Xia ZHANG ; Biao XIAO ; Kai XIE ; Qing-Juan WANG ; Zhi-Tao LIU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2025;52(2):310-333
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive decline and memory impairment in clinical. Currently, there are no effective treatments for AD. In recent years, a variety of therapeutic approaches from different perspectives have been explored to treat AD. Although the drug therapies targeted at the clearance of amyloid β-protein (Aβ) had made a breakthrough in clinical trials, there were associated with adverse events. Neuroinflammation plays a crucial role in the onset and progression of AD. Continuous neuroinflammatory was considered to be the third major pathological feature of AD, which could promote the formation of extracellular amyloid plaques and intracellular neurofibrillary tangles. At the same time, these toxic substances could accelerate the development of neuroinflammation, form a vicious cycle, and exacerbate disease progression. Reducing neuroinflammation could break the feedback loop pattern between neuroinflammation, Aβ plaque deposition and Tau tangles, which might be an effective therapeutic strategy for treating AD. Traditional Chinese herbs such as Polygonum multiflorum and Curcuma were utilized in the treatment of AD due to their ability to mitigate neuroinflammation. Non-steroidal anti-inflammatory drugs such as ibuprofen and indomethacin had been shown to reduce the level of inflammasomes in the body, and taking these drugs was associated with a low incidence of AD. Biosynthetic nanomaterials loaded with oxytocin were demonstrated to have the capability to anti-inflammatory and penetrate the blood-brain barrier effectively, and they played an anti-inflammatory role via sustained-releasing oxytocin in the brain. Transplantation of mesenchymal stem cells could reduce neuroinflammation and inhibit the activation of microglia. The secretion of mesenchymal stem cells could not only improve neuroinflammation, but also exert a multi-target comprehensive therapeutic effect, making it potentially more suitable for the treatment of AD. Enhancing the level of TREM2 in microglial cells using gene editing technologies, or application of TREM2 antibodies such as Ab-T1, hT2AB could improve microglial cell function and reduce the level of neuroinflammation, which might be a potential treatment for AD. Probiotic therapy, fecal flora transplantation, antibiotic therapy, and dietary intervention could reshape the composition of the gut microbiota and alleviate neuroinflammation through the gut-brain axis. However, the drugs of sodium oligomannose remain controversial. Both exercise intervention and electromagnetic intervention had the potential to attenuate neuroinflammation, thereby delaying AD process. This article focuses on the role of drug therapy, gene therapy, stem cell therapy, gut microbiota therapy, exercise intervention, and brain stimulation in improving neuroinflammation in recent years, aiming to provide a novel insight for the treatment of AD by intervening neuroinflammation in the future.
3.Acute Inflammatory Pain Induces Sex-different Brain Alpha Activity in Anesthetized Rats Through Optically Pumped Magnetometer Magnetoencephalography
Meng-Meng MIAO ; Yu-Xuan REN ; Wen-Wei WU ; Yu ZHANG ; Chen PAN ; Xiang-Hong LIN ; Hui-Dan LIN ; Xiao-Wei CHEN
Progress in Biochemistry and Biophysics 2025;52(1):244-257
ObjectiveMagnetoencephalography (MEG), a non-invasive neuroimaging technique, meticulously captures the magnetic fields emanating from brain electrical activity. Compared with MEG based on superconducting quantum interference devices (SQUID), MEG based on optically pump magnetometer (OPM) has the advantages of higher sensitivity, better spatial resolution and lower cost. However, most of the current studies are clinical studies, and there is a lack of animal studies on MEG based on OPM technology. Pain, a multifaceted sensory and emotional phenomenon, induces intricate alterations in brain activity, exhibiting notable sex differences. Despite clinical revelations of pain-related neuronal activity through MEG, specific properties remain elusive, and comprehensive laboratory studies on pain-associated brain activity alterations are lacking. The aim of this study was to investigate the effects of inflammatory pain (induced by Complete Freund’s Adjuvant (CFA)) on brain activity in a rat model using the MEG technique, to analysis changes in brain activity during pain perception, and to explore sex differences in pain-related MEG signaling. MethodsThis study utilized adult male and female Sprague-Dawley rats. Inflammatory pain was induced via intraplantar injection of CFA (100 μl, 50% in saline) in the left hind paw, with control groups receiving saline. Pain behavior was assessed using von Frey filaments at baseline and 1 h post-injection. For MEG recording, anesthetized rats had an OPM positioned on their head within a magnetic shield, undergoing two 15-minute sessions: a 5-minute baseline followed by a 10-minute mechanical stimulation phase. Data analysis included artifact removal and time-frequency analysis of spontaneous brain activity using accumulated spectrograms, generating spectrograms focused on the 4-30 Hz frequency range. ResultsMEG recordings in anesthetized rats during resting states and hind paw mechanical stimulation were compared, before and after saline/CFA injections. Mechanical stimulation elevated alpha activity in both male and female rats pre- and post-saline/CFA injections. Saline/CFA injections augmented average power in both sexes compared to pre-injection states. Remarkably, female rats exhibited higher average spectral power 1 h after CFA injection than after saline injection during resting states. Furthermore, despite comparable pain thresholds measured by classical pain behavioral tests post-CFA treatment, female rats displayed higher average power than males in the resting state after CFA injection. ConclusionThese results imply an enhanced perception of inflammatory pain in female rats compared to their male counterparts. Our study exhibits sex differences in alpha activities following CFA injection, highlighting heightened brain alpha activity in female rats during acute inflammatory pain in the resting state. Our study provides a method for OPM-based MEG recordings to be used to study brain activity in anaesthetized animals. In addition, the findings of this study contribute to a deeper understanding of pain-related neural activity and pain sex differences.
4.Cloning, subcellular localization and expression analysis of SmIAA7 gene from Salvia miltiorrhiza
Yu-ying HUANG ; Ying CHEN ; Bao-wei WANG ; Fan-yuan GUAN ; Yu-yan ZHENG ; Jing FAN ; Jin-ling WANG ; Xiu-hua HU ; Xiao-hui WANG
Acta Pharmaceutica Sinica 2025;60(2):514-525
The auxin/indole-3-acetic acid (Aux/IAA) gene family is an important regulator for plant growth hormone signaling, involved in plant growth, development, as well as response to environmental stresses. In the present study, we identified
5.Biomimetic nanoparticle delivery systems b ased on red blood cell membranes for disease treatment
Chen-xia GAO ; Yan-yu XIAO ; Yu-xue-yuan CHEN ; Xiao-liang REN ; Mei-ling CHEN
Acta Pharmaceutica Sinica 2025;60(2):348-358
Nanoparticle delivery systems have good application prospects in the field of precision therapy, but the preparation process of nanomaterial has problems such as short
6.Analyzing the influencing factors of work-related musculoskeletal disorders in passenger drivers
Xinyang YU ; Yingfei XIANG ; Yonglin LUO ; Meifang XU ; Xiao YIN ; Min YANG ; Huiqing CHEN ; Shijie HU
China Occupational Medicine 2025;52(2):155-159
Objective To investigate the prevalence of work-related musculoskeletal disorders (WMSDs) in passenger drivers and its influencing factors. Methods A total of 951 passenger drivers in Guangdong Province were selected as the research subjects using the judgmental sampling method. A Musculoskeletal Injury Questionnaire was employed to assess the prevalence of WMSDs in the past year. Results The prevalence of WMSDs in passenger drivers was 41.11%. The result of multivariable logistic regression analysis showed that married drivers had a higher risk of WMSDs than single drivers (P<0.05). The lower the frequency of physical exercise, the longer the driving time per week, the longer the continuous driving time, the more restricted the driving working space, the poorer the foot comfort during driving, and the more affected the normal meal, the higher the risk of WMSDs (all P<0.05). The risk of WMSDs in drivers with sleep time ≤ 8.0 h/d was higher than that in drivers with sleep time > 8.0 h/d (P<0.01), and the risk of WMSDs in drivers with the same posture for a long time on the shoulder was higher than that in drivers without this poor working posture (P<0.01). Conclusion WMSDs were prevalent among passenger drivers, which was associated with demographic and adverse ergonomic factors. Intervention on lifestyle and adverse ergonomic factors could further reduce the risk of WMSDs of passenger drivers.
7.A new carrier of targeted drugs for bladder cancer: metal nanoparticles
Xiao YU ; Shenghan XU ; Bo CHEN ; Qiang WANG
Journal of Modern Urology 2025;30(2):174-179
The current clinical treatment of bladder cancer (BCa) is mainly surgical treatment,supplemented by postoperative chemotherapy and immunotherapy.However,due to the lack of specificity,targeting and other reasons,the therapeutic effect is not satisfactory.In recent years,it has been found that metal nanoparticles (MNPs) prepared by gold,silver,and so on,as bladder infusion drugs or drug carriers,can not only accurately target BCa cells,but also have high stability and drug release rate,thereby reducing the side-effects of chemotherapy drugs.Based on domestic and foreign studies,this paper reviews the progress of MNPs in the treatment of BCa,including gold,silver,copper and other MNPs,and prospects the trend of bladder perfusion combined with nanomedical drugs.
8.Seroprevalence and influencing factors of low-level neutralizing antibodies against SARS-CoV-2 in community residents
Shiying YUAN ; Jingyi ZHANG ; Huanyu WU ; Weibing WANG ; Genming ZHAO ; Xiao YU ; Xiaoying MA ; Min CHEN ; Xiaodong SUN ; Zhuoying HUANG ; Zhonghui MA ; Yaxu ZHENG ; Jian CHEN
Shanghai Journal of Preventive Medicine 2025;37(5):403-409
ObjectiveTo understand the seropositivity of neutralizing antibodies (NAb) and low-level NAb against SARS-CoV-2 infection in the community residents, and to explore the impact of COVID-19 vaccination and SARS-CoV-2 infection on the levels of NAb in human serum. MethodsOn the ground of surveillance cohort for acute infectious diseases in community populations in Shanghai, a proportional stratified sampling method was used to enroll the subjects at a 20% proportion for each age group (0‒14, 15‒24, 25‒59, and ≥60 years old). Blood samples collection and serum SARS-CoV-2 NAb concentration testing were conducted from March to April 2023. Low-level NAb were defined as below the 25th percentile of NAb. ResultsA total of 2 230 participants were included, the positive rate of NAb was 97.58%, and the proportion of low-level NAb was 25.02% (558/2 230). Multivariate logistic regression analysis indicated that age, infection history and vaccination status were correlated with low-level NAb (all P<0.05). Individuals aged 60 years and above had the highest risk of low-level NAb. There was a statistically significant interaction between booster vaccination and one single infection (aOR=0.38, 95%CI: 0.19‒0.77). Compared to individuals without vaccination, among individuals infected with SARS-CoV-2 once, both primary immunization (aOR=0.23, 95%CI: 0.16‒0.35) and booster immunization (aOR=0.12, 95%CI: 0.08‒0.17) significantly reduced the risk of low-level NAb; among individuals without infections, only booster immunization (aOR=0.28, 95%CI: 0.14‒0.52) showed a negative correlation with the risk of low-level NAb. ConclusionsThe population aged 60 and above had the highest risk of low-level NAb. Regardless of infection history, a booster immunization could reduce the risk of low-level NAb. It is recommended that eligible individuals , especially the elderly, should get vaccinated in a timely manner to exert the protective role of NAb.
9.Effect of Scutellariae Radix Combined with EGFR-TKIs on Non-small Cell Lung Cancer
Yaya YU ; Chenjing LEI ; Zhenzhen XIAO ; Qi MO ; Changju MA ; Lina DING ; Yadong CHEN ; Yanjuan ZHU ; Haibo ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(18):106-115
ObjectiveTo investigate the effects of Scutellariae Radix combined with epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) on cell proliferation, apoptosis, cancer stem cell (CSC) marker expression, and metabolism in non-small cell lung cancer (NSCLC) cells. MethodsThe anti-tumor effects of Scutellariae Radix and EGFR-TKIs (gefitinib or osimertinib) in NSCLC cells were evaluated using the cell counting kit-8 (CCK-8) and Annexin V-FITC/propidium iodide (PI) double staining apoptosis assay. The activity of Scutellariae Radix and EGFR-TKIs in three-dimensional (3D) cultures of NSCLC cells was assessed using the CellTiter-Glo® 3D cell viability assay. The mRNA and protein expression levels of CSC markers, sex determining region y box protein 2 (SOX2) and aldehyde dehydrogenase 1 family member A1 (ALDH1A1), were detected by quantitative real-time polymerase chain reaction (Real-time PCR) and Western blot, respectively. Changes in intracellular reactive oxygen species (ROS) levels were detected by ROS staining, and the redox ratio was detected by femtosecond laser labeling free imaging (FLI). ResultsUnder both two-dimensional (2D) and 3D culture conditions, compared with the blank group and EGFR-TKI group, the combination group showed significantly reduced cell viability and increased apoptosis rate (P<0.05). Compared with the EGFR-TKI group, the mRNA and protein levels of CSC markers were significantly downregulated in the combination group (P<0.05). Additionally, the redox ratio was significantly elevated (P<0.05), and ROS levels were also increased in the combination group compared with the EGFR-TKI group. ConclusionIn NSCLC cells, Scutellariae Radix enhances the redox ratio and increases ROS levels, thereby inhibiting the expression of CSC markers and strengthening the anti-tumor effects of EGFR-TKIs. This provides a novel molecular mechanism by which Scutellariae Radix may enhance the sensitivity of targeted therapies.
10.The Role of AMPK in Diabetic Cardiomyopathy and Related Intervention Strategies
Fang-Lian LIAO ; Xiao-Feng CHEN ; Han-Yi XIANG ; Zhi XIA ; Hua-Yu SHANG
Progress in Biochemistry and Biophysics 2025;52(10):2550-2567
Diabetic cardiomyopathy is a distinct form of cardiomyopathy that can lead to heart failure, arrhythmias, cardiogenic shock, and sudden death. It has become a major cause of mortality in diabetic patients. The pathogenesis of diabetic cardiomyopathy is complex, involving increased oxidative stress, activation of inflammatory responses, disturbances in glucose and lipid metabolism, accumulation of advanced glycation end products (AGEs), abnormal autophagy and apoptosis, insulin resistance, and impaired intracellular Ca2+ homeostasis. Recent studies have shown that adenosine monophosphate-activated protein kinase (AMPK) plays a crucial protective role by lowering blood glucose levels, promoting lipolysis, inhibiting lipid synthesis, and exerting antioxidant, anti-inflammatory, anti-apoptotic, and anti-ferroptotic effects. It also enhances autophagy, thereby alleviating myocardial injury under hyperglycemic conditions. Consequently, AMPK is considered a key protective factor in diabetic cardiomyopathy. As part of diabetes prevention and treatment strategies, both pharmacological and exercise interventions have been shown to mitigate diabetic cardiomyopathy by modulating the AMPK signaling pathway. However, the precise regulatory mechanisms, optimal intervention strategies, and clinical translation require further investigation. This review summarizes the role of AMPK in the prevention and treatment of diabetic cardiomyopathy through drug and/or exercise interventions, aiming to provide a reference for the development and application of AMPK-targeted therapies. First, several classical AMPK activators (e.g., AICAR, A-769662, O-304, and metformin) have been shown to enhance autophagy and glucose uptake while inhibiting oxidative stress and inflammatory responses by increasing the phosphorylation of AMPK and its downstream target, mammalian target of rapamycin (mTOR), and/or by upregulating the gene expression of glucose transporters GLUT1 and GLUT4. Second, many antidiabetic agents (e.g., teneligliptin, liraglutide, exenatide, semaglutide, canagliflozin, dapagliflozin, and empagliflozin) can promote autophagy, reverse excessive apoptosis and autophagy, and alleviate oxidative stress and inflammation by enhancing AMPK phosphorylation and its downstream targets, such as mTOR, or by increasing the expression of silent information regulator 1 (SIRT1) and peroxisome proliferator-activated receptor‑α (PPAR‑α). Third, certain anti-anginal (e.g., trimetazidine, nicorandil), anti-asthmatic (e.g., farrerol), antibacterial (e.g., sodium houttuyfonate), and antibiotic (e.g., minocycline) agents have been shown to promote autophagy/mitophagy, mitochondrial biogenesis, and inhibit oxidative stress and lipid accumulation via AMPK phosphorylation and its downstream targets such as protein kinase B (PKB/AKT) and/or PPAR‑α. Fourth, natural compounds (e.g., dihydromyricetin, quercetin, resveratrol, berberine, platycodin D, asiaticoside, cinnamaldehyde, and icariin) can upregulate AMPK phosphorylation and downstream targets such as AKT, mTOR, and/or the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), thereby exerting anti-inflammatory, anti-apoptotic, anti-pyroptotic, antioxidant, and pro-autophagic effects. Fifth, moderate exercise (e.g., continuous or intermittent aerobic exercise, aerobic combined with resistance training, or high-intensity interval training) can activate AMPK and its downstream targets (e.g., acetyl-CoA carboxylase (ACC), GLUT4, PPARγ coactivator-1α (PGC-1α), PPAR-α, and forkhead box protein O3 (FOXO3)) to promote fatty acid oxidation and glucose uptake, and to inhibit oxidative stress and excessive mitochondrial fission. Finally, the combination of liraglutide and aerobic interval training has been shown to activate the AMPK/FOXO1 pathway, thereby reducing excessive myocardial fatty acid uptake and oxidation. This combination therapy offers superior improvement in cardiac dysfunction, myocardial hypertrophy, and fibrosis in diabetic conditions compared to liraglutide or exercise alone.

Result Analysis
Print
Save
E-mail