1.Concept, design and clinical application of minimally invasive liver transplantation through laparoscopic combined upper midline incision
Shuhong YI ; Hui TANG ; Kaining ZENG ; Xiao FENG ; Binsheng FU ; Qing YANG ; Jia YAO ; Yang YANG ; Guihua CHEN
Organ Transplantation 2025;16(1):67-73
		                        		
		                        			
		                        			Objective To explore the technical process and clinical application of laparoscopic combined upper midline incision minimally invasive liver transplantation. Methods A retrospective analysis was conducted on 30 cases of laparoscopic combined upper midline incision minimally invasive liver transplantation. The cases were divided into cirrhosis group (15 cases) and liver failure group (15 cases) based on the primary disease. The surgical and postoperative conditions of the two groups were compared. Results All patients successfully underwent laparoscopic "clockwise" liver resection, with no cases of passive conversion to open surgery or intolerance to pneumoperitoneum. In 6 cases, the right lobe was relatively large, and the right hepatic ligaments could not be completely mobilized. One case required an additional reverse "L" incision during open surgery. All patients successfully completed the liver transplantation, with no major intraoperative bleeding, cardiovascular events, or other occurrences in the 30 patients. The model for end-stage liver disease (MELD) score in the cirrhosis group was lower than that in the liver failure group (P<0.001). There were no statistically significant differences between the two groups in terms of age, surgical time, blood loss, anhepatic phase, or cold ischemia time (all P>0.05). During the perioperative period, there was 1 case of hepatic artery embolism, 1 case of portal vein anastomotic stenosis, no complications of hepatic vein and inferior vena cava, and 3 cases of biliary anastomotic stenosis, all of which occurred in the liver failure group. Conclusions In strictly selected cases, the minimally invasive liver transplantation technique combining laparoscopic hepatectomy with upper midline incision for graft implantation has the advantages of smaller incisions, less bleeding, relatively easier operation, and faster postoperative recovery, which is worthy of clinical promotion and application.
		                        		
		                        		
		                        		
		                        	
2.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
		                        		
		                        			 Background/Aims:
		                        			Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation. 
		                        		
		                        			Methods:
		                        			The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation. 
		                        		
		                        			Results:
		                        			MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs. 
		                        		
		                        			Conclusions
		                        			In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs. 
		                        		
		                        		
		                        		
		                        	
3.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
		                        		
		                        			 Background/Aims:
		                        			Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation. 
		                        		
		                        			Methods:
		                        			The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation. 
		                        		
		                        			Results:
		                        			MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs. 
		                        		
		                        			Conclusions
		                        			In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs. 
		                        		
		                        		
		                        		
		                        	
4.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
		                        		
		                        			 Background/Aims:
		                        			Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation. 
		                        		
		                        			Methods:
		                        			The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation. 
		                        		
		                        			Results:
		                        			MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs. 
		                        		
		                        			Conclusions
		                        			In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs. 
		                        		
		                        		
		                        		
		                        	
5.Exploration and Practice of Artificial Intelligence Empowering Case-based Teaching in Biochemistry and Molecular Biology
Ying-Lu HU ; Yi-Chen LIN ; Jun-Ming GUO ; Xiao-Dan MENG
Progress in Biochemistry and Biophysics 2025;52(8):2173-2184
		                        		
		                        			
		                        			In recent years, the deep integration of artificial intelligence (AI) into medical education has created new opportunities for teaching Biochemistry and Molecular Biology, while also offering innovative solutions to the pedagogical challenges associated with protein structure and function. Focusing on the case of anaplastic lymphoma kinase (ALK) gene mutations in non-small-cell lung cancer (NSCLC), this study integrates AI into case-based learning (CBL) to develop an AI-CBL hybrid teaching model. This model features an intelligent case-generation system that dynamically constructs ALK mutation scenarios using real-world clinical data, closely linking molecular biology concepts with clinical applications. It incorporates AI-powered protein structure prediction tools to accurately visualize the three-dimensional structures of both wild-type and mutant ALK proteins, dynamically simulating functional abnormalities resulting from conformational changes. Additionally, a virtual simulation platform replicates the ALK gene detection workflow, bridging theoretical knowledge with practical skills. As a result, a multidimensional teaching system is established—driven by clinical cases and integrating molecular structural analysis with experimental validation. Teaching outcomes indicate that the three-dimensional visualization, dynamic interactivity, and intelligent analytical capabilities provided by AI significantly enhance students’ understanding of molecular mechanisms, classroom engagement, and capacity for innovative research. This model establishes a coherent training pathway linking “fundamental theory-scientific research thinking-clinical practice”, offering an effective approach to addressing teaching challenges and advancing the intelligent transformation of medical education. 
		                        		
		                        		
		                        		
		                        	
6.The Role of AMPK in Diabetic Cardiomyopathy and Related Intervention Strategies
Fang-Lian LIAO ; Xiao-Feng CHEN ; Han-Yi XIANG ; Zhi XIA ; Hua-Yu SHANG
Progress in Biochemistry and Biophysics 2025;52(10):2550-2567
		                        		
		                        			
		                        			Diabetic cardiomyopathy is a distinct form of cardiomyopathy that can lead to heart failure, arrhythmias, cardiogenic shock, and sudden death. It has become a major cause of mortality in diabetic patients. The pathogenesis of diabetic cardiomyopathy is complex, involving increased oxidative stress, activation of inflammatory responses, disturbances in glucose and lipid metabolism, accumulation of advanced glycation end products (AGEs), abnormal autophagy and apoptosis, insulin resistance, and impaired intracellular Ca2+ homeostasis. Recent studies have shown that adenosine monophosphate-activated protein kinase (AMPK) plays a crucial protective role by lowering blood glucose levels, promoting lipolysis, inhibiting lipid synthesis, and exerting antioxidant, anti-inflammatory, anti-apoptotic, and anti-ferroptotic effects. It also enhances autophagy, thereby alleviating myocardial injury under hyperglycemic conditions. Consequently, AMPK is considered a key protective factor in diabetic cardiomyopathy. As part of diabetes prevention and treatment strategies, both pharmacological and exercise interventions have been shown to mitigate diabetic cardiomyopathy by modulating the AMPK signaling pathway. However, the precise regulatory mechanisms, optimal intervention strategies, and clinical translation require further investigation. This review summarizes the role of AMPK in the prevention and treatment of diabetic cardiomyopathy through drug and/or exercise interventions, aiming to provide a reference for the development and application of AMPK-targeted therapies. First, several classical AMPK activators (e.g., AICAR, A-769662, O-304, and metformin) have been shown to enhance autophagy and glucose uptake while inhibiting oxidative stress and inflammatory responses by increasing the phosphorylation of AMPK and its downstream target, mammalian target of rapamycin (mTOR), and/or by upregulating the gene expression of glucose transporters GLUT1 and GLUT4. Second, many antidiabetic agents (e.g., teneligliptin, liraglutide, exenatide, semaglutide, canagliflozin, dapagliflozin, and empagliflozin) can promote autophagy, reverse excessive apoptosis and autophagy, and alleviate oxidative stress and inflammation by enhancing AMPK phosphorylation and its downstream targets, such as mTOR, or by increasing the expression of silent information regulator 1 (SIRT1) and peroxisome proliferator-activated receptor‑α (PPAR‑α). Third, certain anti-anginal (e.g., trimetazidine, nicorandil), anti-asthmatic (e.g., farrerol), antibacterial (e.g., sodium houttuyfonate), and antibiotic (e.g., minocycline) agents have been shown to promote autophagy/mitophagy, mitochondrial biogenesis, and inhibit oxidative stress and lipid accumulation via AMPK phosphorylation and its downstream targets such as protein kinase B (PKB/AKT) and/or PPAR‑α. Fourth, natural compounds (e.g., dihydromyricetin, quercetin, resveratrol, berberine, platycodin D, asiaticoside, cinnamaldehyde, and icariin) can upregulate AMPK phosphorylation and downstream targets such as AKT, mTOR, and/or the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), thereby exerting anti-inflammatory, anti-apoptotic, anti-pyroptotic, antioxidant, and pro-autophagic effects. Fifth, moderate exercise (e.g., continuous or intermittent aerobic exercise, aerobic combined with resistance training, or high-intensity interval training) can activate AMPK and its downstream targets (e.g., acetyl-CoA carboxylase (ACC), GLUT4, PPARγ coactivator-1α (PGC-1α), PPAR-α, and forkhead box protein O3 (FOXO3)) to promote fatty acid oxidation and glucose uptake, and to inhibit oxidative stress and excessive mitochondrial fission. Finally, the combination of liraglutide and aerobic interval training has been shown to activate the AMPK/FOXO1 pathway, thereby reducing excessive myocardial fatty acid uptake and oxidation. This combination therapy offers superior improvement in cardiac dysfunction, myocardial hypertrophy, and fibrosis in diabetic conditions compared to liraglutide or exercise alone. 
		                        		
		                        		
		                        		
		                        	
7.Polysaccharide of Alocasia cucullata Exerts Antitumor Effect by Regulating Bcl-2, Caspase-3 and ERK1/2 Expressions during Long-Time Administration.
Qi-Chun ZHOU ; Shi-Lin XIAO ; Ru-Kun LIN ; Chan LI ; Zhi-Jie CHEN ; Yi-Fei CHEN ; Chao-Hua LUO ; Zhi-Xian MO ; Ying-Bo LIN
Chinese journal of integrative medicine 2024;30(1):52-61
		                        		
		                        			OBJECTIVE:
		                        			To study the in vitro and in vivo antitumor effects of the polysaccharide of Alocasia cucullata (PAC) and the underlying mechanism.
		                        		
		                        			METHODS:
		                        			B16F10 and 4T1 cells were cultured with PAC of 40 µg/mL, and PAC was withdrawn after 40 days of administration. The cell viability was detected by cell counting kit-8. The expression of Bcl-2 and Caspase-3 proteins were detected by Western blot and the expressions of ERK1/2 mRNA were detected by quantitative real-time polymerase chain reaction (qRT-PCR). A mouse melanoma model was established to study the effect of PAC during long-time administration. Mice were divided into 3 treatment groups: control group treated with saline water, positive control group (LNT group) treated with lentinan at 100 mg/(kg·d), and PAC group treated with PAC at 120 mg/(kg·d). The pathological changes of tumor tissues were observed by hematoxylin-eosin staining. The apoptosis of tumor tissues was detected by TUNEL staining. Bcl-2 and Caspase-3 protein expressions were detected by immunohistochemistry, and the expressions of ERK1/2, JNK1 and p38 mRNA were detected by qRT-PCR.
		                        		
		                        			RESULTS:
		                        			In vitro, no strong inhibitory effects of PAC were found in various tumor cells after 48 or 72 h of administration. Interestingly however, after 40 days of cultivation under PAC, an inhibitory effect on B16F10 cells was found. Correspondingly, the long-time administration of PAC led to downregulation of Bcl-2 protein (P<0.05), up-regulation of Caspase-3 protein (P<0.05) and ERK1 mRNA (P<0.05) in B16F10 cells. The above results were verified by in vivo experiments. In addition, viability of B16F10 cells under long-time administration culture in vitro decreased after drug withdrawal, and similar results were also observed in 4T1 cells.
		                        		
		                        			CONCLUSIONS
		                        			Long-time administration of PAC can significantly inhibit viability and promote apoptosis of tumor cells, and had obvious antitumor effect in tumor-bearing mice.
		                        		
		                        		
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Alocasia/metabolism*
		                        			;
		                        		
		                        			MAP Kinase Signaling System
		                        			;
		                        		
		                        			Caspase 3/metabolism*
		                        			;
		                        		
		                        			Apoptosis
		                        			;
		                        		
		                        			RNA, Messenger/metabolism*
		                        			
		                        		
		                        	
8.Inflammatory and Immunomodulatory Effects of Tripterygium wilfordii Multiglycoside in Mouse Models of Psoriasis Keratinocytes.
Shuo ZHANG ; Hong-Jin LI ; Chun-Mei YANG ; Liu LIU ; Xiao-Ying SUN ; Jiao WANG ; Si-Ting CHEN ; Yi LU ; Man-Qi HU ; Ge YAN ; Ya-Qiong ZHOU ; Xiao MIAO ; Xin LI ; Bin LI
Chinese journal of integrative medicine 2024;30(3):222-229
		                        		
		                        			OBJECTIVE:
		                        			To determine the role of Tripterygium wilfordii multiglycoside (TGW) in the treatment of psoriatic dermatitis from a cellular immunological perspective.
		                        		
		                        			METHODS:
		                        			Mouse models of psoriatic dermatitis were established by imiquimod (IMQ). Twelve male BALB/c mice were assigned to IMQ or IMQ+TGW groups according to a random number table. Histopathological changes in vivo were assessed by hematoxylin and eosin staining. Ratios of immune cells and cytokines in mice, as well as PAM212 cell proliferation in vitro were assessed by flow cytometry. Pro-inflammatory cytokine expression was determined using reverse transcription quantitative polymerase chain reaction.
		                        		
		                        			RESULTS:
		                        			TGW significantly ameliorated the severity of IMQ-induced psoriasis-like mouse skin lesions and restrained the activation of CD45+ cells, neutrophils and T lymphocytes (all P<0.01). Moreover, TGW significantly attenuated keratinocytes (KCs) proliferation and downregulated the mRNA levels of inflammatory cytokines including interleukin (IL)-17A, IL-23, tumor necrosis factor α, and chemokine (C-X-C motif) ligand 1 (P<0.01 or P<0.05). Furthermore, it reduced the number of γ δ T17 cells in skin lesion of mice and draining lymph nodes (P<0.01).
		                        		
		                        			CONCLUSIONS
		                        			TGW improved psoriasis-like inflammation by inhibiting KCs proliferation, as well as the associated immune cells and cytokine expression. It inhibited IL-17 secretion from γ δ T cells, which improved the immune-inflammatory microenvironment of psoriasis.
		                        		
		                        		
		                        		
		                        			Male
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Tripterygium
		                        			;
		                        		
		                        			Psoriasis/drug therapy*
		                        			;
		                        		
		                        			Keratinocytes
		                        			;
		                        		
		                        			Skin Diseases/metabolism*
		                        			;
		                        		
		                        			Cytokines/metabolism*
		                        			;
		                        		
		                        			Imiquimod/metabolism*
		                        			;
		                        		
		                        			Dermatitis/pathology*
		                        			;
		                        		
		                        			Disease Models, Animal
		                        			;
		                        		
		                        			Mice, Inbred BALB C
		                        			;
		                        		
		                        			Skin/metabolism*
		                        			
		                        		
		                        	
9.Hypoglycemic activities of flowers of Xanthoceras sorbifolia and identification of anti-oxidant components by off-line UPLC-QTOF-MS/MS-free radical scavenging detection.
Xiajing XU ; Yongli GUO ; Menglin CHEN ; Ning LI ; Yi SUN ; Shumeng REN ; Jiao XIAO ; Dongmei WANG ; Xiaoqiu LIU ; Yingni PAN
Chinese Herbal Medicines 2024;16(1):151-161
		                        		
		                        			OBJECTIVE:
		                        			To identify phytochemical constituents present in the extract of flowers of Xanthoceras sorbifolia and evaluate their anti-oxidant and anti-hyperglycemic capacities.
		                        		
		                        			METHODS:
		                        			The AlCl3 colorimetric method and Prussian Blue assay were used to determine the contents of total flavonoids and total phenolic acids in extraction layers, and the bioactive layers was screened through anti - oxidative activity in vitro. The Waters ACQUITY UPLC system and a Waters ACQUITY UPLC BEH C18 column (2.0 mm × 150 mm, 5 μm) were used to identify the ingredients. And anti-oxidative ingredients were screened by off-line UPLC-QTOF-MS/MS-free radical scavenging. The ameliorative role of it was further evaluated in a high-fat, streptozotocin-induced type 2 diabetic rat model and the study was carried out on NADPH oxidase (PDB ID: 2CDU) by molecular docking.
		                        		
		                        			RESULTS:
		                        			Combined with the results of activity screening in vitro, the anti - oxidative part was identified as the ethyl acetate layer. A total of 24 chemical constituents were identified by liquid chromatography-mass spectrometry in the ethyl acetate layer and 13 main anti-oxidative active constituents were preliminarily screened out through off-line UPLC-QTOF-MS/MS-free radical scavenging. In vivo experiments showed that flowers of X. sorbifolia could significantly reduce the blood glucose level of diabetic mice and alleviate liver cell damage. Based on the results of docking analysis related to the identified phytocompounds and oxidase which involved in type 2 diabetes, quercetin 3-O-rutinoside, kaempferol-3-O-rhamnoside, isorhamnetin-3-O-glucoside, and isoquercitrin showed a better inhibitory profile.
		                        		
		                        			CONCLUSION
		                        			The ethyl acetate layer was rich in flavonoids and phenolic acids and had significant anti-oxidant activity, which could prevent hyperglycemia. This observed activity profile suggested X. sorbifolia flowers as a promising new source of tea to develop alternative natural anti-diabetic products with a high safety margin.
		                        		
		                        		
		                        		
		                        	
10. Benzyl isothiocyanate induces cell cycle arrest and apoptosis in cervical cancer through activation of p53 and AMPK-FOXO1a signaling pathways
Tamasha KURMANJIANG ; Xiao-Jing WANG ; Xin-Yi LI ; Hao WANG ; Guo-Xuan XIE ; Yun-Jie CHEN ; Ting WEN ; Xi-Lu CHENG ; Nuraminai MAIMAITI ; Jin-Yu LI
Chinese Pharmacological Bulletin 2024;40(1):114-158
		                        		
		                        			
		                        			 Aim To investigate the effect of benzyl iso-thiocyanate (BITC) on the proliferation of mouse U14 cervical cancer cells and to explore the mechanism of cytotoxicity based on transcriptomic data analysis. Methods The effect of BITC on U14 cell activity was detected by MTT, nuclear morphological changes were observed by Hochest 33258 and fluorescent inverted microscope, cell cycle and apoptosis were determined by flow cytometry, and the transcriptome database of U14 cells before and after BITC (20 μmol · L 
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail