1.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
2.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
3.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
4.Effects of traditional Chinese medicine on treatment outcomes in severe COVID-19 patients: a single-centre study.
Yongjiu XIAO ; Binbin LI ; Chang LIU ; Xiuyu HUANG ; Ling MA ; Zhirong QIAN ; Xiaopeng ZHANG ; Qian ZHANG ; Dunqing LI ; Xiaoqing CAI ; Xiangyong YAN ; Shuping LUO ; Dawei XIANG ; Kun XIAO
Chinese Journal of Natural Medicines (English Ed.) 2024;22(1):89-96
As the search for effective treatments for COVID-19 continues, the high mortality rate among critically ill patients in Intensive Care Units (ICU) presents a profound challenge. This study explores the potential benefits of traditional Chinese medicine (TCM) as a supplementary treatment for severe COVID-19. A total of 110 critically ill COVID-19 patients at the Intensive Care Unit (ICU) of Vulcan Hill Hospital between Feb., 2020, and April, 2020 (Wuhan, China) participated in this observational study. All patients received standard supportive care protocols, with a subset of 81 also receiving TCM as an adjunct treatment. Clinical characteristics during the treatment period and the clinical outcome of each patient were closely monitored and analysed. Our findings indicated that the TCM group exhibited a significantly lower mortality rate compared with the non-TCM group (16 of 81 vs 24 of 29; 0.3 vs 2.3 person/month). In the adjusted Cox proportional hazards models, TCM treatment was associated with improved survival odds (P < 0.001). Furthermore, the analysis also revealed that TCM treatment could partially mitigate inflammatory responses, as evidenced by the reduced levels of proinflammatory cytokines, and contribute to the recovery of multiple organic functions, thereby potentially increasing the survival rate of critically ill COVID-19 patients.
Humans
;
COVID-19
;
Medicine, Chinese Traditional
;
SARS-CoV-2
;
Critical Illness
;
Treatment Outcome
5.Correlation of emotional abnormalities with the effectiveness of bariatric surgery in obese patients
Yan XU ; Yikai DOU ; Min WANG ; Xiao YANG ; Zhong CHENG ; Yi CHEN ; Xiaohong MA
Sichuan Mental Health 2024;37(1):46-51
BackgroundBariatric surgery has emerged as an important tool in the management of obesity. Some patients undergoing bariatric surgery are prone to develop emotional abnormalities and have abnormally elevated concentrations of inflammatory factors level in peripheral blood, whereas current domestic research focusing on the impact of preoperative emotional states and peripheral blood inflammatory factors level on weight loss effect remains limited. ObjectiveTo explore the correlation of preoperative emotional abnormalities with the effectiveness of bariatric surgery in obese patients, and to provide theoretical basis for improving the clinical efficacy of bariatric surgery. MethodsEighty-one obese patients scheduled for bariatric surgery at gastrointestinal surgery Department of West China Hospital, Sichuan University from December 30, 2022 to June 30, 2023 were enrolled and assessed using Hamilton Depression Scale-17 item (HAMD-17) and Hamilton Anxiety Scale (HAMA). Patients who scored 7 or above on HAMD-17 or HAMA or had a history of previous depression or anxiety diagnoses were classified into emotional abnormality group (n=34), and samples who scored less than 7 on HAMD-17 and HAMA and were free of history of previous depression and anxiety diagnoses were set as non-emotional abnormality group (n=47). The data were collected by the self made questionnaire. Patients were subjected to complete the assessment of Beck Scale for Suicide Ideation-Chinese Version (BSI-CV), Eating Disorder Inventory (EDI) and Pittsburgh Sleep Quality Index (PSQI). Laboratory tests including peripheral blood C-reactive protein (CRP) and interleukin-6 (IL-6). Body weight and height assessed in the early morning after an overnight fasting period were recorded in all participants at 1- and 6-month after surgery through outpatient clinic visits or telephone follow-up. Pearson correlation coefficient was used to examine relationship among body mass index (BMI), preoperative emotional states and peripheral blood inflammation mediators. ResultsAmong 81 obese patients, 62 completed the study, including 27 cases in emotional abnormality group and 35 cases in non-emotional abnormality group
6.Research progress of IDO1-mediated tryptophan metabolism in sepsis
Xiao-di ZHAO ; Cheng-yan MA ; Hua-qing CUI ; Yu-chen WANG ; Xiao-guang CHEN ; Sen ZHANG
Acta Pharmaceutica Sinica 2024;59(2):289-297
Sepsis is a condition characterized by organ dysfunction resulting from the systemic inflammatory response triggered by an infection. Excessive inflammation and immunosuppression are intertwined, and severe cases may even develop into multiple organ failure. Studies have shown that indoleamine 2,3-dioxygenase 1-mediated tryptophan metabolism is involved in the occurrence and development of sepsis, and elevated plasma kynurenine levels and Kyn/Trp ratios are early indicators of sepsis development. In this paper, we provide a comprehensive summary of the role of IDO1 in the acute inflammatory phase of sepsis, late immunosuppression, and organ damage. This includes its regulation of inflammatory state, immune cell function, blood pressure, and other aspects. Additionally, we analyze preclinical studies on targeted IDO1 drugs. An in-depth understanding and study of IDO may help to understand the pathogenesis and clinical significance of sepsis and multiple organ damage from a new perspective and provide new research ideas for exploring its prevention and treatment methods.
7.Hydroxysafflor Yellow A Promotes HaCaT Cell Proliferation and Migration by Regulating HBEGF/EGFR and PI3K/AKT Pathways and Circ_0084443.
Yue ZHANG ; Yan-Wei XIAO ; Jing-Xin MA ; Ao-Xue WANG
Chinese journal of integrative medicine 2024;30(3):213-221
OBJECTIVE:
To investigate the effect and possible mechanism of hydroxysafflor yellow A (HSYA) on human immortalized keratinocyte cell proliferation and migration.
METHODS:
HaCaT cells were treated with HSYA. Cell proliferation was detected by the cell counting kit-8 assay, and cell migration was measured using wound healing assay and Transwell migration assay. The mRNA and protein expression levels of heparin-binding epidermal growth factor (EGF)-like growth factor (HBEGF), EGF receptor (EGFR), phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT), mammalian target of rapamycin (mTOR), and hypoxia-inducible factor-1α (HIF-1α) were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot, respectively. Circ_0084443-overexpressing HaCaT cells and empty plasmid HaCaT cells were constructed using the lentiviral stable transfection and treated with HSYA. The expression of circ_0084443 was detected by qRT-PCR.
RESULTS:
HSYA (800 µmol/L) significantly promoted HaCaT cell proliferation and migration (P<0.05 or P<0.01). It also increased the mRNA and protein expression levels of HBEGF, EGFR, PI3K, AKT, mTOR and HIF-1α, and increased the phosphorylation levels of PI3K and AKT (P<0.05 or P<0.01). Furthermore, HSYA promoted HaCaT cell proliferation and migration via the HBEGF/EGFR and PI3K/AKT/mTOR signaling pathways (P<0.01). Circ_0084443 attenuated the mRNA expression levels of HBEGF, EGFR, PI3K, AKT, mTOR and HIF-1α (P<0.05). HSYA inhibited the circ_0084443 expression, further antagonized the inhibition of circ_0084443 on HBEGF, EGFR, PI3K, AKT, mTOR and HIF-1α, and promoted the proliferation of circ_0084443-overexpressing HaCaT cells (P<0.05 or P<0.01). However, HSYA could not influence the inhibitory effect of circ_0084443 on HaCaT cell migration (P>0.05).
CONCLUSION
HSYA played an accelerative role in HaCaT cell proliferation and migration, which may be attributable to activating HBEGF/EGFR and PI3K/AKT signaling pathways, and had a particular inhibitory effect on the keratinocyte negative regulator circ_0084443.
Humans
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Phosphatidylinositol 3-Kinase
;
Phosphatidylinositol 3-Kinases/metabolism*
;
ErbB Receptors/genetics*
;
TOR Serine-Threonine Kinases/metabolism*
;
Cell Proliferation
;
RNA, Messenger/genetics*
;
Cell Movement
;
Cell Line, Tumor
;
Chalcone/analogs & derivatives*
;
Quinones
8.Progress on effect of CypA/CD147 in diagnosis and treatment of cardiovascular system disease infected by SARS-CoV-2
Ming-Ren MA ; Fei WANG ; Xiao-Qing CAI ; Yan LIU ; Ling MA
Medical Journal of Chinese People's Liberation Army 2024;49(1):115-120
Corona virus disease 2019(COVID-19)epidemic has been effectively controlled,but its related complications still cannot be ignored,especially the cardiovascular circulatory system is the active site of the severe acute respiratory syndrome coronavirus 2(SARS-CoV-2).Angiotensin-converting enzyme 2(ACE2)is a type Ⅰ transmembrane glycoprotein that is highly expressed in heart,kidney and testis.Spike protein of SARS-CoV-2 invades host cells by binding to the cell surface receptor ACE2.However,there are still many deficiencies in the clinical application of vaccines and drugs developed based on this target.As a molecular chaperone,cyclophilin A(CypA)promotes protein folding and T cell activation.CD147 is one of the most widely studied CypA receptors,and the interaction of CypA/CD147 plays an important role in the entry of SARS-CoV-2 into host cells.However,there are few reports on the invasion of SARS-CoV-2 into the cardiovascular system through the CypA/CD147 signaling pathway.Based on this,this article summarizes the previous research evidence and the research basis of the research group,and reviews the structure and function of CypA/CD147,the role of CypA/CD147 in cardiovascular disease,and the cardiovascular disease caused by SARS-CoV-2 targeting CypA/CD147 signal pathway,in order to provide reference for the diagnosis and treatment of the COVID-19 complicated with cardiovascular system diseases.
9.Effects of Astragaloside Ⅳ on cardiac hypertrophy in rats with chronic heart failure based on PI3K/Akt/GSK3β signaling pathway
Lin-Yan WANG ; Chao LI ; Ming-Yi MA ; Xiao-Sheng SHENG
The Chinese Journal of Clinical Pharmacology 2024;40(1):57-61
Objective To investigate the effects of astragaloside Ⅳ on cardiac hypertrophy in chronic heart failure(CHF)rats,and the regulation of phosphoinositol-3-kinase/protein kinase B/glycogen synthase kinase 3 β(PI3K/Akt/GSK3β)signaling pathway.Methods CHF rat model was established by anterior descending coronary artery ligation,and randomly divided into model group,control group and experimental-L,-M,-H groups,with 8 rats in each group.Another 8 rats were hooked up without ligature as blank group.The experimental-L,-M,-H groups were given 20,40 and 80 mg·mL-1 astragaloside solution according to the dose of 5 mL·kg-1.The control group was given 1.50 mg·kg-1 lisinopril solution at a dose of 5 mL·kg-1.Both blank group and model group were given equal volume of 0.9%NaCl.Six groups of rats were given the drug once a day for 8 weeks by intragastric administration.The cardiac function of rats was measured by echocardiography,the cross-sectional area of cardiomyocytes was observed by wheat embryo lectin staining,and the expression levels of PI3K,Akt and GSK3β were detected by Western blot.Results The left ventricular ejection fraction of experimental-H,control,model and blank groups were(66.27±5.18)%,(67.75±4.98)%,(46.67±3.68)%and(81.65±6.46)%;left ventricular end-diastolic diameter was(0.53±0.05),(0.55±0.05),(0.45±0.02)and(0.57±0.05)mm;the cross-sectional areas of cardiomyocytes were(1.97±0.13),(1.61±0.18),(3.56±0.59)and(1.00±0.04)mm;the relative expression levels of phosphorylated PI3K protein were 0.45±0.04,0.71±0.07,0.11±0.02 and 0.85±0.06;the relative expression levels of phosphorylated Akt protein were 0.43±0.05,0.75±0.06,0.10±0.03 and 0.82±0.06;the relative expression levels of phosphorylated GSK3 β protein were 0.47±0.04,0.85±0.05,0.12±0.04 and 0.89±0.08,respectively.The above indexes of experimental-H group and control group were significantly different from those of model group(all P<0.05).Conclusion Astragaloside Ⅳ can improve cardiac dysfunction and inhibit myocardial hypertrophy in CHF rats,which may be related to the regulation of PI3 K/Akt/GSK3 β signaling pathway.
10.Research status of bevacizumab associated hypertension
Huan WANG ; Song-Tao MA ; Hong-Tao XIAO ; Yan CHEN ; Jun YIN ; Ke XU ; Kai CHENG
The Chinese Journal of Clinical Pharmacology 2024;40(5):763-767
Objective Bevacizumab has been clinically used in colorectal cancer,ovarian cancer,cervical cancer,non-small cell lung cancer and other tumor diseases.Common adverse reactions during bevacizumab treatment include albuminuria,thrombosis,bleeding,gastrointestinal perforation and hypertension,among which the incidence of hypertension is as high as 19%-47%.The occurrence of hypertension affects the quality of life of patients,hinds the normal development of tumor treatment,and even induces serious cardiovascular diseases and increases the risk of death,which requires clinical attention.In this paper,the mechanism,influencing factors,prognosis and related treatment of bevacizumab associated hypertension were reviewed,so as to provide reference for clinical rational drug use.

Result Analysis
Print
Save
E-mail