1.Role of SPINK in Dermatologic Diseases and Potential Therapeutic Targets
Yong-Hang XIA ; Hao DENG ; Li-Ling HU ; Wei LIU ; Xiao TAN
Progress in Biochemistry and Biophysics 2025;52(2):417-424
Serine protease inhibitor Kazal-type (SPINK) is a skin keratinizing protease inhibitor, which was initially found in animal serum and is widely present in plants, animals, bacteria, and viruses, and they act as key regulators of skin keratinizing proteases and are involved in the regulation of keratinocyte proliferation and inflammation, primarily through the inhibition of deregulated tissue kinin-releasing enzymes (KLKs) in skin response. This process plays a crucial role in alleviating various skin problems caused by hyperkeratinization and inflammation, and can greatly improve the overall condition of the skin. Specifically, the different members of the SPINK family, such as SPINK5, SPINK6, SPINK7, and SPINK9, each have unique biological functions and mechanisms of action. The existence of these members demonstrates the diversity and complexity of skin health and disease. First, SPINK5 mutations are closely associated with the development of various skin diseases, such as Netherton’s syndrome and atopic dermatitis, and SPINK5 is able to inhibit the activation of the STAT3 signaling pathway, thereby effectively preventing the metastasis of melanoma cells, which is important in preventing the invasion and migration of malignant tumors. Secondly, SPINK6 is mainly distributed in the epidermis and contains lysine and glutamate residues, which can act as a substrate for epidermal transglutaminase to maintain the normal structure and function of the skin. In addition, SPINK6 can activate the intracellular ERK1/2 and AKT signaling pathways through the activation of epidermal growth factor receptor and protease receptor-2 (EphA2), which can promote the migration of melanoma cells, and SPINK6 further deepens its role in stimulating the migration of malignant tumor cells by inhibiting the activation of STAT3 signaling pathway. This process further deepens its potential impact in stimulating tumor invasive migration. Furthermore, SPINK7 plays a role in the pathology of some inflammatory skin diseases, and is likely to be an important factor contributing to the exacerbation of skin diseases by promoting aberrant proliferation of keratinocytes and local inflammatory responses. Finally, SPINK9 can induce cell migration and promote skin wound healing by activating purinergic receptor 2 (P2R) to induce phosphorylation of epidermal growth factor and further activating the downstream ERK1/2 signaling pathway. In addition, SPINK9 also plays an antimicrobial role, preventing the interference of some pathogenic microorganisms. Taken as a whole, some members of the SPINK family may be potential targets for the treatment of dermatological disorders by regulating multiple biological processes such as keratinization metabolism and immuno-inflammatory processes in the skin. The development of drugs such as small molecule inhibitors and monoclonal antibodies has great potential for the treatment of dermatologic diseases, and future research on SPINK will help to gain a deeper understanding of the physiopathologic processes of the skin. Through its functions and regulatory mechanisms, the formation and maintenance of the skin barrier and the occurrence and development of inflammatory responses can be better understood, which will provide novel ideas and methods for the prevention and treatment of skin diseases.
2.Expert consensus on the positioning of the "Three-in-One" Registration and Evaluation Evidence System and the value of orientation of the "personal experience"
Qi WANG ; Yongyan WANG ; Wei XIAO ; Jinzhou TIAN ; Shilin CHEN ; Liguo ZHU ; Guangrong SUN ; Daning ZHANG ; Daihan ZHOU ; Guoqiang MEI ; Baofan SHEN ; Qingguo WANG ; Xixing WANG ; Zheng NAN ; Mingxiang HAN ; Yue GAO ; Xiaohe XIAO ; Xiaobo SUN ; Kaiwen HU ; Liqun JIA ; Li FENG ; Chengyu WU ; Xia DING
Journal of Beijing University of Traditional Chinese Medicine 2025;48(4):445-450
Traditional Chinese Medicine (TCM), as a treasure of the Chinese nation, plays a significant role in maintaining public health. In 2019, the Central Committee of the Communist Party of China and the State Council proposed for the first time the establishment of a TCM registration and evaluation evidence system that integrates TCM theory, "personal experience" and clinical trials (referred to as the "Three-in-One" System) to promote the inheritance and innovation of TCM. Subsequently, the National Medical Products Administration issued several guiding principles to advance the improvement and implementation of this system. Owing to the complexity of its implementation, there are still differing understandings within the TCM industry regarding the positioning of the "Three-in-One" Registration and Evaluation Evidence System, as well as the connotation and value orientation of the "personal experience." To address this, Academician WANG Qi, President of the TCM Association, China International Exchange and Promotion Association for Medical and Healthcare and TCM master, led a group of academicians, TCM masters, TCM pharmacology experts and clinical TCM experts to convene a "Seminar on Promoting the Implementation of the ′Three-in-One′ Registration and Evaluation Evidence System for Chinese Medicinals." Through extensive discussions, an expert consensus was formed, clarifying the different roles of the TCM theory, "personal experience" and clinical trials within the system. It was further emphasized that the "personal experience" is the core of this system, and its data should be derived from clinical practice scenarios. In the future, the improvement of this system will require collaborative efforts across multiple fields to promote the high-quality development of the Chinese medicinal industry.
3.The role of glucose metabolism reprogramming and its targeted therapeutic agents in inflammation-related diseases
Yi WEI ; Xiao-man JIANG ; Shi-lin XIA ; Jing XU ; Ya LI ; Ran DENG ; Yan WANG ; Hong WU
Acta Pharmaceutica Sinica 2024;59(3):511-519
Cells undergo glucose metabolism reprogramming under the influence of the inflammatory microenvironment, changing their primary mode of energy supply from oxidative phosphorylation to aerobic glycolysis. This process is involved in all stages of inflammation-related diseases development. Glucose metabolism reprogramming not only changes the metabolic pattern of individual cells, but also disrupts the metabolic homeostasis of the body microenvironment, which further promotes aerobic glycolysis and provides favourable conditions for the malignant progression of inflammation-related diseases. The metabolic enzymes, transporter proteins, and metabolites of aerobic glycolysis are all key signalling molecules, and drugs can inhibit aerobic glycolysis by targeting these specific key molecules to exert therapeutic effects. This paper reviews the impact of glucose metabolism reprogramming on the development of inflammation-related diseases such as inflammation-related tumours, rheumatoid arthritis and Alzheimer's disease, and the therapeutic effects of drugs targeting glucose metabolism reprogramming on these diseases.
4.Study on the potential allergen and mechanism of pseudo-allergic reactions induced by combined using of Reduning injection and penicillin G injection based on metabolomics and bioinformatics
Yu-long CHEN ; You ZHAI ; Xiao-yan WANG ; Wei-xia LI ; Hui ZHANG ; Ya-li WU ; Liu-qing YANG ; Xiao-fei CHEN ; Shu-qi ZHANG ; Lu NIU ; Ke-ran FENG ; Kun LI ; Jin-fa TANG ; Ming-liang ZHANG
Acta Pharmaceutica Sinica 2024;59(2):382-394
Based on the strategy of metabolomics combined with bioinformatics, this study analyzed the potential allergens and mechanism of pseudo-allergic reactions (PARs) induced by the combined use of Reduning injection and penicillin G injection. All animal experiments and welfare are in accordance with the requirements of the First Affiliated Experimental Animal Ethics and Animal Welfare Committee of Henan University of Chinese Medicine (approval number: YFYDW2020002). Based on UPLC-Q-TOF/MS technology combined with UNIFI software, a total of 21 compounds were identified in Reduning and penicillin G mixed injection. Based on molecular docking technology, 10 potential allergens with strong binding activity to MrgprX2 agonist sites were further screened. Metabolomics analysis using UPLC-Q-TOF/MS technology revealed that 34 differential metabolites such as arachidonic acid, phosphatidylcholine, phosphatidylserine, prostaglandins, and leukotrienes were endogenous differential metabolites of PARs caused by combined use of Reduning injection and penicillin G injection. Through the analysis of the "potential allergen-target-endogenous differential metabolite" interaction network, the chlorogenic acids (such as chlorogenic acid, neochlorogenic acid, cryptochlorogenic acid, and isochlorogenic acid A) and
5.Effect of tumor vascular disrupting agent 5,6-dimethylxanthenone-4-acetic acid on metastasis of Lewis lung cancer in mice
Xia CUI ; Wei HE ; Zhiyong XIAO ; Ying WANG ; Feng LIU ; Wenxia ZHOU
Chinese Journal of Pharmacology and Toxicology 2024;38(3):161-169
OBJECTIVE To investigate the inhibitory effect and mechanism of 5,6-dimethylxanthe-none-4-acetic acid(DMXAA)on metastasis of Lewis lung cancer(LLC)in mice.METHODS The inhibi-tory effect of DMXAA on tumor metastasis was analyzed via an LLC xenograft tumor model and LLC metastatic tumor model.The mice of LLC xenograft tumor model were randomly divided into three groups:model group(physiological saline containing 1%DMSO,ip,once every two days),model+suni-tinib group(30 mg·kg-1,ip,once every two days),and model+DMXAA group(25 mg·kg-1,ip,once).Tumor volume and body mass were measured once every two days after administration.Two and five days after administration,tumor mass was measured by sacrificing the mice,followed by immunofluores-cence staining of tumor tissues.Platelet/endothelial cell adhesion molecule-1(CD31)and α-smooth muscle actin(α-SMA)were used to analyze the vascular structure of tumor tissues.The tumor hypoxia level was detected using the hypoxia probe pimonidazole staining.The mice of LLC metastatic tumor model were randomly divided into three groups:model group(physiological saline containing 1%DMSO,ip,twice a week),model+sunitinib group(60 mg·kg-1,ip,twice a week),and model+DMXAA group(25 mg·kg-1,ip,once).At the Two and five weeks after administration,the in vivo tumor growth and metastasis were observed and quantified using a small animal live imaging system.RESULTS Compared with the model group,the tumor volume and mass of the model+sunitinib group and model+ DMXAA group were significantly reduced(P<0.05,P<0.01),and DMXAA took effect faster and more significantly than sunitinib.At the same time,compared with the model group,the body mass in the model+sunitinib group decreased significantly(P<0.05),but there was no significant difference in body mass the model+DMXAA group.Compared with the model group,model+sunitinib had no effect on tumor metastasis,but model+DMXAA significantly reduced tumor metastasis two weeks after administration(P<0.01).Compared with the model group,the coverage rate of α-SMA/CD31 in the model+sunitinib group and model+DMXAA group increased significantly(P<0.05).Compared with the model group,there was no significant change in the tumor hypoxia area in the model+sunitinib group,but this in the model+DMXAA group decreased significantly(P<0.01).CONCLUSION DMXAA significantly inhibits the growth and metastasis of LLC in mice,and its mechanism may be related to its improvement of tumor vascular normalization and hyposic microenvironments.
6.Study on the catalytic mechanism of triterpene C-29 carboxylases from Tripterygium wilfordii based on directed evolution
Pan-ting LIU ; Yi-feng ZHANG ; Yuan LIU ; Jie GAO ; Lin MA ; Xiao-yi WU ; Ya-ting HU ; Ping SU ; Shi-jun YUAN ; Xia-nan ZHANG ; Wei GAO
Acta Pharmaceutica Sinica 2024;59(6):1883-1893
Celastrol and wilforlide A are the main active triterpenoids of the traditional Chinese medicine Lei Gong Teng, which have anti-tumour, anti-inflammatory and immunosuppressive activities, and are the material basis for the clinical efficacy of Lei Gong Teng-related Chinese medicinal preparations. By analysing the biosynthetic pathway of active ingredients, optimizing genetic elements and utilizing "cell factory" to produce triterpenoids heterologously will be an effective way to obtain from
7.Efficacy of Yiqi Wenyang Huwei Decoction on airway inflammation in bronchial asthma in rats based on IL-25/NF-κB signaling pathway
A-Xin XIA ; Shuang-Di XIANG ; Xiao-Pu SU ; Shuai-Liang HUANG ; Jian-Wei YU
Chinese Traditional Patent Medicine 2024;46(2):431-436
AIM To explore the mechanism of Yiqi Wenyang Huwei Decoction on airway inflammation improvement of rats with bronchial asthma based on IL-25/NF-κB signaling pathway.METHODS 60 rats were randomly divided into the control group,the model group,the dexamethasone group(0.2 mg/mL),the low-dose,medium-dose and high-dose Yiqi Wenyang Huwei Decoction groups(1,2,4 g/mL),with 10 rats in each group.Intraperitoneal injection of ovalbumin(OVA)and aluminum hydroxide suspension was applied to establish the rat asthma model,followed by 2-week corresponding dosing of the drugs.The rats of each group had their daily diet,mental status,hair growth and respiration observed;their differential count of inflammatory cells in bronchoalveolar lavage fluid(BALF)detected by automatic hematology analyzer;their pathological changes of lung tissue observed by HE staining;their pulmonary IL-25 protein expression detected by immunohistochemistry(IHC);their levels of IL-4,IL-5 and IL-13 in BALF measured by ELISA;their pulmonary expression of IL-25 and TRAF6 mRNA detected by RT-qPCR;and their pulmonary protein expressions of IL-25,TRAF6,IκBα,p-IκBα,NF-κB p65 and p-NF-κB p65 detected by Western blot.RESULTS Compared with the control group,the model group displayed severe damage of the lung tissue and infiltration of a large number of inflammatory cells;increased number of inflammatory cells and levels of IL-4,IL-5 and IL-13 in BALF(P<0.01);increased mRNA expressions of IL-25 and TRAF6,and pulmonary protein expressions of IL-25,TRAF6,p-IκBα/IκBα and p-NF-κB p65/NF-κB p65(P<0.01).Compared with the model group,all of the Yiqi Wenyang Huwei Decoction groups shared improved pulmonary infiltration of inflammatory cells;decreased number of inflammatory cells and levels of IL-4,IL-5 and IL-13 in BALF(P<0.05,P<0.01);and decreased mRNA expressions of IL-25 and TRAF6,and pulmonary protein expressions of IL-25,TRAF6,p-IκBα/IκBα and p-NF-κB p65/NF-κB p65(P<0.01).CONCLUSION Yiqi Wenyang Huwei Decoction can inhibit the airway inflammation in the rat model of bronchial asthma,which may be related to the inhibited activation of IL-25/NF-κB signaling pathway and the reduced expression of inflammatory factors.
8.Exploring the risk "time interval window" of sequential medication of Reduning injection and penicillin G injection based on the correlation between biochemical indexes and metabolomics characteristics
Ming-liang ZHANG ; Yu-long CHEN ; Xiao-yan WANG ; Xiao-fei CHEN ; Hui ZHANG ; Ya-li WU ; Liu-qing YANG ; Shu-qi ZHANG ; Lu NIU ; Ke-ran FENG ; Wei-xia LI ; Jin-fa TANG
Acta Pharmaceutica Sinica 2024;59(7):2098-2107
Exploring the risk "time interval window" of sequential medication of Reduning injection (RDN) and penicillin G injection (PG) by detecting the correlation between serum biochemical indexes and plasma metabonomic characteristics, in order to reduce the risk of adverse reactions caused by the combination of RDN and PG. All animal experiments and welfare are in accordance with the requirements of the First Affiliated Experimental Animal Ethics and Animal Welfare Committee of Henan University of Chinese Medicine (approval number: YFYDW2020002). The changes of biochemical indexes in serum of rats were detected by enzyme-linked immunosorbent assay. It was determined that RDN combined with PG could cause pseudo-allergic reactions (PARs) activated by complement pathway. Further investigation was carried out at different time intervals (1.5, 2, 3.5, 4, 6, and 8 h PG+RDN). It was found that sequential administration within 3.5 h could cause significant PARs. However, PARs were significantly reduced after administration interval of more than 4 h. LC-MS was used for plasma metabolomics analysis, and the levels of serum biochemical indicators and plasma metabolic profile characteristics were compared in parallel. 22 differential metabolites showed similar or opposite trends to biochemical indicators before and after 3.5 h. And enriched to 10 PARs-related pathways such as arachidonic acid metabolism, steroid hormone biosynthesis, linoleic acid metabolism, glycerophospholipid metabolism, and tryptophan metabolism. In conclusion, there is a risk "time interval window" phenomenon in the adverse drug reactions caused by the sequential use of RDN and PG, and the interval medication after the "time interval window" can significantly reduce the risk of adverse reactions.
9.Isolation, chiral separation and absolute configuration determination of lignanoids from an aqueous extract of the Angelica sinensis root head
Xiao-yi ZHANG ; Zhao XIA ; Xiao-qiang LEI ; Wei-ping LI ; Rong LIU ; Qing-lan GUO ; Jian-gong SHI
Acta Pharmaceutica Sinica 2024;59(7):2077-2086
From an aqueous extract of the
10.Correlation between Combined Urinary Metal Exposure and Grip Strength under Three Statistical Models: A Cross-sectional Study in Rural Guangxi
Jian Yu LIANG ; Hui Jia RONG ; Xiu Xue WANG ; Sheng Jian CAI ; Dong Li QIN ; Mei Qiu LIU ; Xu TANG ; Ting Xiao MO ; Fei Yan WEI ; Xia Yin LIN ; Xiang Shen HUANG ; Yu Ting LUO ; Yu Ruo GOU ; Jing Jie CAO ; Wu Chu HUANG ; Fu Yu LU ; Jian QIN ; Yong Zhi ZHANG
Biomedical and Environmental Sciences 2024;37(1):3-18
Objective This study aimed to investigate the potential relationship between urinary metals copper (Cu), arsenic (As), strontium (Sr), barium (Ba), iron (Fe), lead (Pb) and manganese (Mn) and grip strength. Methods We used linear regression models, quantile g-computation and Bayesian kernel machine regression (BKMR) to assess the relationship between metals and grip strength.Results In the multimetal linear regression, Cu (β=-2.119), As (β=-1.318), Sr (β=-2.480), Ba (β=0.781), Fe (β= 1.130) and Mn (β=-0.404) were significantly correlated with grip strength (P < 0.05). The results of the quantile g-computation showed that the risk of occurrence of grip strength reduction was -1.007 (95% confidence interval:-1.362, -0.652; P < 0.001) when each quartile of the mixture of the seven metals was increased. Bayesian kernel function regression model analysis showed that mixtures of the seven metals had a negative overall effect on grip strength, with Cu, As and Sr being negatively associated with grip strength levels. In the total population, potential interactions were observed between As and Mn and between Cu and Mn (Pinteractions of 0.003 and 0.018, respectively).Conclusion In summary, this study suggests that combined exposure to metal mixtures is negatively associated with grip strength. Cu, Sr and As were negatively correlated with grip strength levels, and there were potential interactions between As and Mn and between Cu and Mn.


Result Analysis
Print
Save
E-mail