1.Enzyme-directed Immobilization Strategies for Biosensor Applications
Xing-Bao WANG ; Yao-Hong MA ; Yun-Long XUE ; Xiao-Zhen HUANG ; Yue SHAO ; Yi YU ; Bing-Lian WANG ; Qing-Ai LIU ; Li-He ZHANG ; Wei-Li GONG
Progress in Biochemistry and Biophysics 2025;52(2):374-394
Immobilized enzyme-based enzyme electrode biosensors, characterized by high sensitivity and efficiency, strong specificity, and compact size, demonstrate broad application prospects in life science research, disease diagnosis and monitoring, etc. Immobilization of enzyme is a critical step in determining the performance (stability, sensitivity, and reproducibility) of the biosensors. Random immobilization (physical adsorption, covalent cross-linking, etc.) can easily bring about problems, such as decreased enzyme activity and relatively unstable immobilization. Whereas, directional immobilization utilizing amino acid residue mutation, affinity peptide fusion, or nucleotide-specific binding to restrict the orientation of the enzymes provides new possibilities to solve the problems caused by random immobilization. In this paper, the principles, advantages and disadvantages and the application progress of enzyme electrode biosensors of different directional immobilization strategies for enzyme molecular sensing elements by specific amino acids (lysine, histidine, cysteine, unnatural amino acid) with functional groups introduced based on site-specific mutation, affinity peptides (gold binding peptides, carbon binding peptides, carbohydrate binding domains) fused through genetic engineering, and specific binding between nucleotides and target enzymes (proteins) were reviewed, and the application fields, advantages and limitations of various immobilized enzyme interface characterization techniques were discussed, hoping to provide theoretical and technical guidance for the creation of high-performance enzyme sensing elements and the manufacture of enzyme electrode sensors.
2.Role of Innate Trained Immunity in Diseases
Chuang CHENG ; Yue-Qing WANG ; Xiao-Qin MU ; Xi ZHENG ; Jing HE ; Jun WANG ; Chao TAN ; Xiao-Wen LIU ; Li-Li ZOU
Progress in Biochemistry and Biophysics 2025;52(1):119-132
The innate immune system can be boosted in response to subsequent triggers by pre-exposure to microbes or microbial products, known as “trained immunity”. Compared to classical immune memory, innate trained immunity has several different features. Firstly, the molecules involved in trained immunity differ from those involved in classical immune memory. Innate trained immunity mainly involves innate immune cells (e.g., myeloid immune cells, natural killer cells, innate lymphoid cells) and their effector molecules (e.g., pattern recognition receptor (PRR), various cytokines), as well as some kinds of non-immune cells (e.g., microglial cells). Secondly, the increased responsiveness to secondary stimuli during innate trained immunity is not specific to a particular pathogen, but influences epigenetic reprogramming in the cell through signaling pathways, leading to the sustained changes in genes transcriptional process, which ultimately affects cellular physiology without permanent genetic changes (e.g., mutations or recombination). Finally, innate trained immunity relies on an altered functional state of innate immune cells that could persist for weeks to months after initial stimulus removal. An appropriate inducer could induce trained immunity in innate lymphocytes, such as exogenous stimulants (including vaccines) and endogenous stimulants, which was firstly discovered in bone marrow derived immune cells. However, mature bone marrow derived immune cells are short-lived cells, that may not be able to transmit memory phenotypes to their offspring and provide long-term protection. Therefore, trained immunity is more likely to be relied on long-lived cells, such as epithelial stem cells, mesenchymal stromal cells and non-immune cells such as fibroblasts. Epigenetic reprogramming is one of the key molecular mechanisms that induces trained immunity, including DNA modifications, non-coding RNAs, histone modifications and chromatin remodeling. In addition to epigenetic reprogramming, different cellular metabolic pathways are involved in the regulation of innate trained immunity, including aerobic glycolysis, glutamine catabolism, cholesterol metabolism and fatty acid synthesis, through a series of intracellular cascade responses triggered by the recognition of PRR specific ligands. In the view of evolutionary, trained immunity is beneficial in enhancing protection against secondary infections with an induction in the evolutionary protective process against infections. Therefore, innate trained immunity plays an important role in therapy against diseases such as tumors and infections, which has signature therapeutic effects in these diseases. In organ transplantation, trained immunity has been associated with acute rejection, which prolongs the survival of allografts. However, trained immunity is not always protective but pathological in some cases, and dysregulated trained immunity contributes to the development of inflammatory and autoimmune diseases. Trained immunity provides a novel form of immune memory, but when inappropriately activated, may lead to an attack on tissues, causing autoinflammation. In autoimmune diseases such as rheumatoid arthritis and atherosclerosis, trained immunity may lead to enhance inflammation and tissue lesion in diseased regions. In Alzheimer’s disease and Parkinson’s disease, trained immunity may lead to over-activation of microglial cells, triggering neuroinflammation even nerve injury. This paper summarizes the basis and mechanisms of innate trained immunity, including the different cell types involved, the impacts on diseases and the effects as a therapeutic strategy to provide novel ideas for different diseases.
3.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
4.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
5.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
6.Research progress in micro/nanobubbles for ultrasound diagnosis or treatment
Qing-qing AN ; Chen-xi LI ; Shao-kun YANG ; Xiao-ming HE ; Yue-heng WANG ; Chao-xing HE ; Bai XIANG
Acta Pharmaceutica Sinica 2024;59(3):581-590
In the past few decades, microbubbles were widely used as ultrasound contrast agents in the field of tumor imaging. With the development of research, ultrasound targeted microbubble destruction technology combined with drug-loaded microbubbles can achieve precise drug release and play a therapeutic role. As a micron-scale carrier, microbubbles are difficult to penetrate the endothelial cell space of tumors, and nano-scale drug delivery system—nanobubbles came into being. The structure of the two is similar, but the difference in size highlights the unique advantages of nanobubbles in drug delivery. Based on the classification principle of shell materials, this review summarized micro/nanobubbles used for ultrasound diagnosis or treatment and discussed the possible development directions, providing references for the subsequent development.
7.Stability study of umbilical cord mesenchymal stem cells formulation in large-scale production
Wang-long CHU ; Tong-jing LI ; Yan SHANGGUAN ; Fang-tao HE ; Jian-fu WU ; Xiu-ping ZENG ; Tao GUO ; Qing-fang WANG ; Fen ZHANG ; Zhen-zhong ZHONG ; Xiao LIANG ; Jun-yuan HU ; Mu-yun LIU
Acta Pharmaceutica Sinica 2024;59(3):743-750
Umbilical cord mesenchymal stem cells (UC-MSCs) have been widely used in regenerative medicine, but there is limited research on the stability of UC-MSCs formulation during production. This study aims to assess the stability of the cell stock solution and intermediate product throughout the production process, as well as the final product following reconstitution, in order to offer guidance for the manufacturing process and serve as a reference for formulation reconstitution methods. Three batches of cell formulation were produced and stored under low temperature (2-8 ℃) and room temperature (20-26 ℃) during cell stock solution and intermediate product stages. The storage time intervals for cell stock solution were 0, 2, 4, and 6 h, while for intermediate products, the intervals were 0, 1, 2, and 3 h. The evaluation items included visual inspection, viable cell concentration, cell viability, cell surface markers, lymphocyte proliferation inhibition rate, and sterility. Additionally, dilution and culture stability studies were performed after reconstitution of the cell product. The reconstitution diluents included 0.9% sodium chloride injection, 0.9% sodium chloride injection + 1% human serum albumin, and 0.9% sodium chloride injection + 2% human serum albumin, with dilution ratios of 10-fold and 40-fold. The storage time intervals after dilution were 0, 1, 2, 3, and 4 h. The reconstitution culture media included DMEM medium, DMEM + 2% platelet lysate, 0.9% sodium chloride injection, and 0.9% sodium chloride injection + 1% human serum albumin, and the culture duration was 24 h. The evaluation items were viable cell concentration and cell viability. The results showed that the cell stock solution remained stable for up to 6 h under both low temperature (2-8 ℃) and room temperature (20-26 ℃) conditions, while the intermediate product remained stable for up to 3 h under the same conditions. After formulation reconstitution, using sodium chloride injection diluted with 1% or 2% human serum albumin maintained a viability of over 80% within 4 h. It was observed that different dilution factors had an impact on cell viability. After formulation reconstitution, cultivation in medium with 2% platelet lysate resulted in a cell viability of over 80% after 24 h. In conclusion, the stability of cell stock solution within 6 h and intermediate product within 3 h meets the requirements. The addition of 1% or 2% human serum albumin in the reconstitution diluent can better protect the post-reconstitution cell viability.
8.miR-375 Attenuates The Migration and Invasion of Osteosarcoma Cells by Targeting MMP13
Zhong LIU ; Lei HE ; Jian XIAO ; Qing-Mei ZHU ; Jun XIAO ; Yong-Ming YANG ; Yong-Jian LUO ; Zhong-Cheng MO ; Yi-Qun ZHANG ; Ming LI
Progress in Biochemistry and Biophysics 2024;51(5):1203-1214
ObjectiveTo explore whether miR-375 regulates the malignant characteristics of osteosarcoma (OS) by influencing the expression of MMP13. MethodsPlasmid DNAs and miRNAs were transfected into OS cells and HEK293 cells using Lipofectamine 3000 reagent. Real-time quantitative polymerase chain reaction was performed to measure the expression of miR-375 and MMP13 in OS patients and OS cells. Western blot was performed to analyze the MMP13 protein in the patients with OS and OS cells. The targeting relationship between miR-375 and MMP13 was analyzed by luciferase assay. Migration and invasion were analysed by heal wound and transwell assays, respectively. ResultsmiR-375 expression in OS tissues was lower than that in normal tissues. The expression of MMP13 was upregulated in OS tissues. MMP13 expression was negatively correlated withmiR-375 expression in patients with OS. Migration and invasion were significantly inhibited in OS cells with the miR-375 mimic compared with OS cells with the miRNA control. MMP13 partially reversed the inhibition of migration and invasion induced by miR-375 in the OS cells. ConclusionmiR-375 attenuates migration and invasion by downregulating the expression of MMP13 in OS cells.
9.Tumor Therapy: Targeted Substances Metabolism Reprogramming Induces Tumor Ferroptosis
Jin-Ping ZHANG ; Yue-Qing WANG ; Mo WANG ; Xin-Yue WANG ; Xiao-Qin MOU ; Xi ZHENG ; Chuang CHENG ; Jing HE ; Li-Li ZOU ; Xiao-Wen LIU
Progress in Biochemistry and Biophysics 2024;51(7):1540-1550
There are huge differences between tumor cells and normal cells in material metabolism, and tumor cells mainly show increased anabolism, decreased catabolism, and imbalance in substance metabolism. These differences provide the necessary material basis for the growth and reproduction of tumor cells, and also provide important targets for the treatment of tumors. Ferroptosis is an iron-dependent form of cell death characterized by an imbalance of iron-dependent lipid peroxidation and lipid membrane antioxidant systems in cells, resulting in excessive accumulation of lipid peroxide, causing damage to lipid membrane structure and loss of function, and ultimately cell death. The regulation of ferroptosis involves a variety of metabolic pathways, including glucose metabolism, lipid metabolism, amino acid metabolism, nucleotide metabolism and iron metabolism. In order for tumor cells to grow rapidly, their metabolic needs are more vigorous than those of normal cells. Tumor cells are metabolically reprogrammed to meet their rapidly proliferating material and energy needs. Metabolic reprogramming is mainly manifested in glycolysis and enhancement of pentose phosphate pathway, enhanced glutamine metabolism, increased nucleic acid synthesis, and iron metabolism tends to retain more intracellular iron. Metabolic reprogramming is accompanied by the production of reactive oxygen species and the activation of the antioxidant system. The state of high oxidative stress makes tumor cells more susceptible to redox imbalances, causing intracellular lipid peroxidation, which ultimately leads to ferroptosis. Therefore, in-depth study of the molecular mechanism and metabolic basis of ferroptosis is conducive to the development of new therapies to induce ferroptosis in cancer treatment. Ferroptosis, as a regulated form of cell death, can induce ferroptosis in tumor cells by pharmacologically or genetically targeting the metabolism of substances in tumor cells, which has great potential value in tumor treatment. This article summarizes the effects of cellular metabolism on ferroptosis in order to find new targets for tumor treatment and provide new ideas for clinical treatment.
10.Effects of total flavonoids of Oxytropis falcata Bunge on CCl4-induced liver fibrosis in rats
Tian-Yan YANG ; Xin-Huan MA ; Zhi-Wei XU ; Rong-Kun LI ; Fang-Xiong MA ; Bao-Feng HE ; Liang CHEN ; Xiao-Qing CHEN ; Jun ZHANG
The Chinese Journal of Clinical Pharmacology 2024;40(14):2073-2077
Objective To investigate the effects of total flavones from Oxytropis falcata Bunge on hepatic fibrosis(HF)induced by carbon tetrachloride and liver transforming growth factor(TGF-β)/Smad signaling pathway.Methods Forty-eight male rats were randomly divided into normal group(intraperitoneal injection of peanut oil,intragastric administration of 0.9%NaCl),model group(intraperitoneal injection of 40%CC14 peanut oil solution induced HF model,intragastric administration of 0.9%NaCl),positive control group(modeling,intragastric administration of 0.2 mg·kg-1 of colchicine),experimental-L,-M,-H groups(modeling,intragastric administration of 100,200 and 400 mg·kg-1 of total flavonoid extract of Oxytropis falcata Bunge),8 individuals in each group,for 4 consecutive weeks.The histopathological changes were observed by hematoxylin-eosin and Masson staining.Serum liver function and liver fibrosis were measured;erum inflammatory factors were detected;fluorescence quantitative polymerase chain reaction(RT-qPCR)was used to determine gene expression in liver.Results The pathological injury of liver tissue in the model group was serious,and a large number of inflammatory factors and collagen fibers were accumulated,while the rest of the treatment groups had different degrees of remission.In normal group,model group,positive control group,experimental-L,-M,-H groups,glutamic-pyruvic transaminase levels were(49.28±12.44),(5 885.42±948.37),(4 454.60±489.27),(4 650.47±843.53),(3 761.75±887.30)and(3 544.90±1 066.75)μg·L-1;glutamic-oxaloacetic transaminase levels were(186.90±46.89),(5 936.23±793.81),(3 971.37±780.28),(4 360.30±863.35),(3 943.10±439.47)and(3 971.38±631.08)μg·L-1;hyaluronic acid levels were(45.08±17.16),(104.32±36.06),(66.83±20.09),(70.30±21.07),(60.00±9.68)and(59.02±10.73)μg·L-1;laminin levels were(23.13±3.89),(60.85±13.66),(35.67±9.92),(39.98±9.39),(36.55±12.21)and(34.68±24.83)μg·L-1;type Ⅲ procollagen level were(24.98±5.34),(82.58±30.14),(40.70±16.14),(51.08±23.21),(43.60±12.48)and(44.20±11.66)p±g·L-1;interleukin(IL)-1β levels were(37.63±1.24),(46.10±3.23),(39.22±2.36),(41.33±0.93),(40.25±2.04)and(39.18±2.23)pg·mL-1;tumor necrosis factor-α levels were(314.58±20.56),(383.71±16.97),(349.00±7.93),(348.88±25.11),(325.75±27.84)and(335.07±21.33)pg·mL-1;TGF-β1 mRNA expression of relative quantity respectively were 1.00±0.00,60.99±15.70,9.61±1.59,7.37±1.09,6.41±0.64,6.87±1.09;Smad7 mRNA relative expression were 1.00±0.00,0.34±0.05,0.21±0.03,0.35±0.02,0.38±0.02,0.42±0.03.The above indexes in the model group were compared with the normal group,and the above indexes in the experimental-M,-H groups were compared with the model group,and the differences were statistically significant(P<0.05,P<0.01,P<0.001).Conclusion Total flavonoids of Oxytropis falcata Bunge have protective effects on CC14-induced liver fibrosis in rats,and the mechanism may be related to the regulation of TGF-β/Smad pathway.

Result Analysis
Print
Save
E-mail