1.Effects of Exercise Training on The Behaviors and HPA Axis in Autism Spectrum Disorder Rats Through The Gut Microbiota
Xue-Mei CHEN ; Yin-Hua LI ; Jiu-Gen ZHONG ; Zhao-Ming YANG ; Xiao-Hui HOU
Progress in Biochemistry and Biophysics 2025;52(6):1511-1528
		                        		
		                        			
		                        			ObjectiveThe study explores the influence of voluntary wheel running on the behavioral abnormalities and the activation state of the hypothalamic-pituitary-adrenal (HPA) axis in autism spectrum disorder (ASD) rats through gut microbiota. MethodsSD female rats were selected and administered either400 mg/kg of valproic acid (VPA) solution or an equivalent volume of saline via intraperitoneal injection on day 12.5 of pregnancy. The resulting offspring were divided into 2 groups: the ASD model group (PASD, n=35) and the normal control group (PCON, n=16). Behavioral assessments, including the three-chamber social test, open field test, and Morris water maze, were conducted on postnatal day 23. After behavioral testing, 8 rats from each group (PCON, PASD) were randomly selected for serum analysis using enzyme-linked immunosorbent assay (ELISA) to measure corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), and corticosterone (CORT) concentration, to evaluate the functional state of the HPA axis in rats. On postnatal day 28, the remaining 8 rats in the PCON group were designated as the control group (CON, n=8), and the remaining 27 rats in the PASD group were randomly divided into 4 groups: ASD non-intervention group (ASD, n=6), ASD exercise group (ASDE, n=8), ASD fecal microbiota transplantation group (FMT, n=8), and ASD sham fecal microbiota transplantation group (sFMT, n=5). The rats in the ASD group and the CON group were kept under standard conditions, while the rats in the ASDE group performed 6 weeks of voluntary wheel running intervention starting on postnatal day 28. The rats in the FMT group were gavaged daily from postnatal day 42 with 1 ml/100 g fresh fecal suspension from ASDE rats which had undergone exercise for 2 weeks, 5 d per week, continuing for 4 weeks. The sFMT group received an equivalent volume of saline. After the interventions were completed, behavioral assessments and HPA axis markers were measured for all groups. ResultsBefore the intervention, the ASD model group exhibited significantly reduced social ability, social novelty preference, spontaneous activity, and exploratory interest, as well as impaired spatial learning, memory, and navigation abilities compared to the normal control group (P<0.05). Serum concentration of corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), and corticosterone (CORT) in the PASD group were significantly higher than those in the PCON group (P<0.05). Following 6 weeks of voluntary wheel running, the ASDE group showed significant improvements in social ability, social novelty preference, spontaneous activity, exploratory interest, spatial learning, memory, and navigation skills compared to the ASD group (P<0.05), with a significant decrease in serum CORT concentration (P<0.05), and a downward trend in CRH and ACTH concentration. After 4 weeks of fecal microbiota transplantation in the exercise group, the FMT group showed marked improvements in social ability, social novelty preference, spontaneous activity, exploratory interest, as well as spatial learning, memory, and navigation abilities compared to both the ASD and sFMT groups (P<0.05). In addition, serum ACTH and CORT concentration were significantly reduced (P<0.05), and CRH concentration also showed a decreasing trend. ConclusionExercise may improve ASD-related behaviors by suppressing the activation of the HPA axis, with the gut microbiota likely playing a crucial role in this process. 
		                        		
		                        		
		                        		
		                        	
2.6-Week Caloric Restriction Improves Lipopolysaccharide-induced Septic Cardiomyopathy by Modulating SIRT3
Ming-Chen ZHANG ; Hui ZHANG ; Ting-Ting LI ; Ming-Hua CHEN ; Xiao-Wen WANG ; Zhong-Guang SUN
Progress in Biochemistry and Biophysics 2025;52(7):1878-1889
		                        		
		                        			
		                        			ObjectiveThe aim of this study was to investigate the prophylactic effects of caloric restriction (CR) on lipopolysaccharide (LPS)-induced septic cardiomyopathy (SCM) and to elucidate the mechanisms underlying the cardioprotective actions of CR. This research aims to provide innovative strategies and theoretical support for the prevention of SCM. MethodsA total of forty-eight 8-week-old male C57BL/6 mice, weighing between 20-25 g, were randomly assigned to 4 distinct groups, each consisting of 12 mice. The groups were designated as follows: CON (control), LPS, CR, and CR+LPS. Prior to the initiation of the CR protocol, the CR and CR+LPS groups underwent a 2-week acclimatization period during which individual food consumption was measured. The initial week of CR intervention was set at 80% of the baseline intake, followed by a reduction to 60% for the subsequent 5 weeks. After 6-week CR intervention, all 4 groups received an intraperitoneal injection of either normal saline or LPS (10 mg/kg). Twelve hours post-injection, heart function was assessed, and subsequently, heart and blood samples were collected. Serum inflammatory markers were quantified using enzyme-linked immunosorbent assay (ELISA). The serum myocardial enzyme spectrum was analyzed using an automated biochemical instrument. Myocardial tissue sections underwent hematoxylin and eosin (HE) staining and immunofluorescence (IF) staining. Western blot analysis was used to detect the expression of protein in myocardial tissue, including inflammatory markers (TNF-α, IL-9, IL-18), oxidative stress markers (iNOS, SOD2), pro-apoptotic markers (Bax/Bcl-2 ratio, CASP3), and SIRT3/SIRT6. ResultsTwelve hours after LPS injection, there was a significant decrease in ejection fraction (EF) and fractional shortening (FS) ratios, along with a notable increase in left ventricular end-systolic diameter (LVESD). Morphological and serum indicators (AST, LDH, CK, and CK-MB) indicated that LPS injection could induce myocardial structural disorders and myocardial injury. Furthermore, 6-week CR effectively prevented the myocardial injury. LPS injection also significantly increased the circulating inflammatory levels (IL-1β, TNF-α) in mice. IF and Western blot analyses revealed that LPS injection significantly up-regulating the expression of inflammatory-related proteins (TNF-α, IL-9, IL-18), oxidative stress-related proteins (iNOS, SOD2) and apoptotic proteins (Bax/Bcl-2 ratio, CASP3) in myocardial tissue. 6-week CR intervention significantly reduced circulating inflammatory levels and downregulated the expression of inflammatory, oxidative stress-related proteins and pro-apoptotic level in myocardial tissue. Additionally, LPS injection significantly downregulated the expression of SIRT3 and SIRT6 proteins in myocardial tissue, and CR intervention could restore the expression of SIRT3 proteins. ConclusionA 6-week CR could prevent LPS-induced septic cardiomyopathy, including cardiac function decline, myocardial structural damage, inflammation, oxidative stress, and apoptosis. The mechanism may be associated with the regulation of SIRT3 expression in myocardial tissue. 
		                        		
		                        		
		                        		
		                        	
3.Exploration and Practice of Artificial Intelligence Empowering Case-based Teaching in Biochemistry and Molecular Biology
Ying-Lu HU ; Yi-Chen LIN ; Jun-Ming GUO ; Xiao-Dan MENG
Progress in Biochemistry and Biophysics 2025;52(8):2173-2184
		                        		
		                        			
		                        			In recent years, the deep integration of artificial intelligence (AI) into medical education has created new opportunities for teaching Biochemistry and Molecular Biology, while also offering innovative solutions to the pedagogical challenges associated with protein structure and function. Focusing on the case of anaplastic lymphoma kinase (ALK) gene mutations in non-small-cell lung cancer (NSCLC), this study integrates AI into case-based learning (CBL) to develop an AI-CBL hybrid teaching model. This model features an intelligent case-generation system that dynamically constructs ALK mutation scenarios using real-world clinical data, closely linking molecular biology concepts with clinical applications. It incorporates AI-powered protein structure prediction tools to accurately visualize the three-dimensional structures of both wild-type and mutant ALK proteins, dynamically simulating functional abnormalities resulting from conformational changes. Additionally, a virtual simulation platform replicates the ALK gene detection workflow, bridging theoretical knowledge with practical skills. As a result, a multidimensional teaching system is established—driven by clinical cases and integrating molecular structural analysis with experimental validation. Teaching outcomes indicate that the three-dimensional visualization, dynamic interactivity, and intelligent analytical capabilities provided by AI significantly enhance students’ understanding of molecular mechanisms, classroom engagement, and capacity for innovative research. This model establishes a coherent training pathway linking “fundamental theory-scientific research thinking-clinical practice”, offering an effective approach to addressing teaching challenges and advancing the intelligent transformation of medical education. 
		                        		
		                        		
		                        		
		                        	
4. Network pharmacology-based study on mechanism of Zhi-Huang-Zhi-Tong powder in rheumatoid arthritis treatment
Xiao-Yun TIAN ; Ying-Jie YANG ; Wan-Ting ZHENG ; Ming-Qing HUANG ; Li-Hong NAN ; Jian-Yu CHEN ; Hai-Yu ZHAO
Chinese Pharmacological Bulletin 2024;40(2):381-389
		                        		
		                        			
		                        			 Aim To discover the potential active compounds and possible mechanisms in rheumatoid arthritis (RA) treatment with Zhi-Huang-Zhi-Tong powder (ZHZTP) by using network pharmacology and in vitro study. Methods The active ingredient targets and disease targets of Zhihuang Zhitong Powder were searched and screened by database; they intersected to get a common target; and the "drug-component-target" relationship network diagram was constructed for GO and KEGG enrichment analysis of the overlapping genes; then the core components were docked with the core targets. Finally, based on the inflammation model of HUVECs in vitro, the efficacy and mechanism of Zhihuang Zhitong powder were verified by MTT method, plate scratch test and Western blot. Results Active compounds involved in RA treatment were screened in the present study, and the top two were ursolic acid and emodin, all playing crucial roles in RA treatment with ZHZTP. Additionally, the key target was AKTA, TNF and IL-6. GO and KEGG enrichment analysis revealed that ZHZTP regulated BP, MF and CC, and also focused on regulating AKTA, TNF and IL-6 signaling pathway. Molecular docking showed that interactions between key active compounds and key targets were stable. In vitro ZHZTP significantly inhibited cell viability and migration of TNF-a-stimulated HUVECs, and the involved mechanism may be associated with PI3K/AKT/m-TOR signaling. Conclusions The present study reveals that the potential active compounds of ZHZTP are ursolic acid and emodin, and moreover, the involved mechanisms of ZHZTP for RA treatment are associated with PI3 K/AKT/m-TOR signaling. 
		                        		
		                        		
		                        		
		                        	
		                				5.Identification, expression and protein interaction analysis of Aux/IAA  and ARF  gene family in Senna tora  L.
		                			
		                			Zhao FENG ; Shi-peng LIU ; Rui-hua LÜ ; Rui-hua LÜ ; Xiao-chen HU ; Ming-ying ZHANG ; Ren-jun MAO ; Gang ZHANG
Acta Pharmaceutica Sinica 2024;59(3):751-763
		                        		
		                        			
		                        			 The early response of plant auxin gene family 
		                        		
		                        	
6.Research progress in micro/nanobubbles for ultrasound diagnosis or treatment
Qing-qing AN ; Chen-xi LI ; Shao-kun YANG ; Xiao-ming HE ; Yue-heng WANG ; Chao-xing HE ; Bai XIANG
Acta Pharmaceutica Sinica 2024;59(3):581-590
		                        		
		                        			
		                        			 In the past few decades, microbubbles were widely used as ultrasound contrast agents in the field of tumor imaging. With the development of research, ultrasound targeted microbubble destruction technology combined with drug-loaded microbubbles can achieve precise drug release and play a therapeutic role. As a micron-scale carrier, microbubbles are difficult to penetrate the endothelial cell space of tumors, and nano-scale drug delivery system—nanobubbles came into being. The structure of the two is similar, but the difference in size highlights the unique advantages of nanobubbles in drug delivery. Based on the classification principle of shell materials, this review summarized micro/nanobubbles used for ultrasound diagnosis or treatment and discussed the possible development directions, providing references for the subsequent development. 
		                        		
		                        		
		                        		
		                        	
7.Study on the potential allergen and mechanism of pseudo-allergic reactions induced by combined using of Reduning injection and penicillin G injection based on metabolomics and bioinformatics
Yu-long CHEN ; You ZHAI ; Xiao-yan WANG ; Wei-xia LI ; Hui ZHANG ; Ya-li WU ; Liu-qing YANG ; Xiao-fei CHEN ; Shu-qi ZHANG ; Lu NIU ; Ke-ran FENG ; Kun LI ; Jin-fa TANG ; Ming-liang ZHANG
Acta Pharmaceutica Sinica 2024;59(2):382-394
		                        		
		                        			
		                        			 Based on the strategy of metabolomics combined with bioinformatics, this study analyzed the potential allergens and mechanism of pseudo-allergic reactions (PARs) induced by the combined use of Reduning injection and penicillin G injection. All animal experiments and welfare are in accordance with the requirements of the First Affiliated Experimental Animal Ethics and Animal Welfare Committee of Henan University of Chinese Medicine (approval number: YFYDW2020002). Based on UPLC-Q-TOF/MS technology combined with UNIFI software, a total of 21 compounds were identified in Reduning and penicillin G mixed injection. Based on molecular docking technology, 10 potential allergens with strong binding activity to MrgprX2 agonist sites were further screened. Metabolomics analysis using UPLC-Q-TOF/MS technology revealed that 34 differential metabolites such as arachidonic acid, phosphatidylcholine, phosphatidylserine, prostaglandins, and leukotrienes were endogenous differential metabolites of PARs caused by combined use of Reduning injection and penicillin G injection. Through the analysis of the "potential allergen-target-endogenous differential metabolite" interaction network, the chlorogenic acids (such as chlorogenic acid, neochlorogenic acid, cryptochlorogenic acid, and isochlorogenic acid A) and 
		                        		
		                        	
8.Mechanism of salvianolic acid B protecting H9C2 from OGD/R injury based on mitochondrial fission and fusion
Zi-xin LIU ; Gao-jie XIN ; Yue YOU ; Yuan-yuan CHEN ; Jia-ming GAO ; Ling-mei LI ; Hong-xu MENG ; Xiao HAN ; Lei LI ; Ye-hao ZHANG ; Jian-hua FU ; Jian-xun LIU
Acta Pharmaceutica Sinica 2024;59(2):374-381
		                        		
		                        			
		                        			 This study aims to investigate the effect of salvianolic acid B (Sal B), the active ingredient of Salvia miltiorrhiza, on H9C2 cardiomyocytes injured by oxygen and glucose deprivation/reperfusion (OGD/R) through regulating mitochondrial fission and fusion. The process of myocardial ischemia-reperfusion injury was simulated by establishing OGD/R model. The cell proliferation and cytotoxicity detection kit (cell counting kit-8, CCK-8) was used to detect cell viability; the kit method was used to detect intracellular reactive oxygen species (ROS), total glutathione (t-GSH), nitric oxide (NO) content, protein expression levels of mitochondrial fission and fusion, apoptosis-related detection by Western blot. Mitochondrial permeability transition pore (MPTP) detection kit and Hoechst 33342 fluorescence was used to observe the opening level of MPTP, and molecular docking technology was used to determine the molecular target of Sal B. The results showed that relative to control group, OGD/R injury reduced cell viability, increased the content of ROS, decreased the content of t-GSH and NO. Furthermore, OGD/R injury increased the protein expression levels of dynamin-related protein 1 (Drp1), mitofusions 2 (Mfn2), Bcl-2 associated X protein (Bax) and cysteinyl aspartate specific proteinase 3 (caspase 3), and decreased the protein expression levels of Mfn1, increased MPTP opening level. Compared with the OGD/R group, it was observed that Sal B had a protective effect at concentrations ranging from 6.25 to 100 μmol·L-1. Sal B decreased the content of ROS, increased the content of t-GSH and NO, and Western blot showed that Sal B decreased the protein expression levels of Drp1, Mfn2, Bax and caspase 3, increased the protein expression level of Mfn1, and decreased the opening level of MPTP. In summary, Sal B may inhibit the opening of MPTP, reduce cell apoptosis and reduce OGD/R damage in H9C2 cells by regulating the balance of oxidation and anti-oxidation, mitochondrial fission and fusion, thereby providing a scientific basis for the use of Sal B in the treatment of myocardial ischemia reperfusion injury. 
		                        		
		                        		
		                        		
		                        	
9.The Effect of Smoking on the Semen Quality in Male Infertile
Yingjie YAO ; Jinfeng CAI ; Jianghou HOU ; Yunyan CHEN ; Ming XIA ; Haiyun YANG ; Pengying XIAO ; Lijun WANG
Journal of Kunming Medical University 2024;45(1):163-167
		                        		
		                        			
		                        			Objective To investigate the effect of smoking on the semen quality in infertile men.Methods A total of 360 male infertility patients were enrolled and divided into the smoking group(n=190)and non-smoking group(n=170)based on whether they smoked or not.Furthermore,the smoking group was subdivided into group A(≤10 sticks/d,n=63),group B(11~20 sticks/d,n=80),and group C(>20 sticks/d group,n=47)according to the amount of smoking.Semen volume,liquefaction time,sperm concentration,motility,DNA fragmentation rate and normal morphological rate were observed and compared between and within the groups.Results There were significant differences in semen volume,liquefaction time,sperm motility,normal morphological rate and DNA fragmentation rate between the smoking group and the non-smoking group(P<0.05).The semen volume,sperm motility and normal morphological rate of the smoking group were lower than those in the non-smoking group,and the DNA fragmentation rate and semen liquefaction time were higher than those in the non-smoking group.And with the increase of smoking volume,sperm motility and normal morphological rate decreased,semen liquefaction time and DNA fragmentation rate increased,and there was no significant difference in the sperm concentration between the smoking group and non-smoking group(P>0.05).There was no significant difference in the semen volume between the three groups with different smoking amounts(P>0.05).Conclusion Smoking has a negative impact on the sperm quality parameters such as semen volume,sperm motility,normal morphological rate,sperm motility,liquefaction time and DNA fragmentation,and the effect of heavy smoking is particularly obvious.We should strengthen the comprehensive health education,promote the healthy lifestyles and reduce smoking.
		                        		
		                        		
		                        		
		                        	
10.Practice of refined management throughout the whole process of sporadic repair projects in public hospitals
Yupeng YAN ; Lili KONG ; Zixiao JIANG ; Ming CHEN ; Taiying ZHOU ; Yousheng XIAO
Modern Hospital 2024;24(3):413-415,419
		                        		
		                        			
		                        			As public hospitals continue to expand,buildings continue to age,sporadic renovation projects are increas-ing,and expenditures are increasing.In order to ensure the safe,stable and efficient operation of the hospital,the piecemeal re-pair project has become an important basic guarantee for the hospital.There are many kinds of sporadic repair projects,and the projects are trivial and scattered.The contradictions among the needs,cost control,management ability and service quality of sporadic repair projects are becoming increasingly prominent,which has become the difficulty and pain point of logistics service management.In the practice of hospital sporadic repair project management,the traditional project management mode is broken,the whole process of fine management system is established,the level of management personnel and the whole process of the pro-ject are effectively integrated,and the management ability and service quality of sporadic maintenance projects are comprehensive-ly improved.
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail