1.The level of HBV cccDNA in liver tissue and its clinical significance in patients in the convalescence stage of hepatitis B virus-related acute-on-chronic liver failure
Zhekai CAI ; Long XU ; Wenli LIU ; Yingqun XIAO ; Qingmei ZHONG ; Wei ZHANG ; Min WU
Journal of Clinical Hepatology 2025;41(1):57-62
ObjectiveTo investigate the expression level of HBV cccDNA in patients in the convalescence stage of hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF) and its correlation with HBV markers and liver histopathological changes. MethodsA total of 30 patients in the convalescence stage of HBV-ACL who were hospitalized in The Ninth Hospital of Nanchang from January 2015 to October 2023 were enrolled as liver failure group, and 9 patients with chronic hepatitis B (CHB), matched for sex and age, were enrolled as control group. The content of HBV cccDNA in liver tissue was measured, and its correlation with clinical data and laboratory markers was analyzed. The independent-samples t test or the Mann-Whitney U test was used for comparison of continuous data between two groups, and a one-way analysis of variance or the Kruskal-Wallis H test was used for comparison between multiple groups; the Fisher’s exact test was used for comparison of categorical data between groups. A Spearman correlation analysis was performed. ResultsThe liver failure group had a significantly lower content of HBV cccDNA in liver tissue than the control group (-0.92±0.70 log10 copies/cell vs -0.13±0.91 log10 copies/cell, t=2.761, P=0.009). In the liver failure group, there was no significant difference in the content of HBV cccDNA in liver tissue between the HBeAg-positive patients and the HBeAg-negative patients (P>0.05); there was no significant difference in the content of HBV cccDNA in liver tissue between the patients with different grades (G0-G2, G3, and G4) of liver inflammatory activity (P>0.05); there was no significant difference in the content of HBV cccDNA in liver tissue between the patients with different stages (S0-S2, S3, and S4) of liver fibrosis (P>0.05); there was no significant difference in the content of HBV cccDNA in liver tissue between the patients with negative HBV DNA and those with positive HBV DNA (P>0.05). For the liver failure group, the content of HBV cccDNA in liver tissue was positively correlated with the content of HBV DNA in liver tissue (r=0.426, P=0.043) and was not significantly correlated with the content of HBV DNA in serum (P>0.05). ConclusionThere is a significant reduction in the content of HBV cccDNA in liver tissue in the convalescence stage of HBV-ACLF. HBV cccDNA exists continuously and stably in liver tissue and can better reflect the persistent infection and replication of HBV than HBV DNA in serum and liver tissue.
2.Enzyme-directed Immobilization Strategies for Biosensor Applications
Xing-Bao WANG ; Yao-Hong MA ; Yun-Long XUE ; Xiao-Zhen HUANG ; Yue SHAO ; Yi YU ; Bing-Lian WANG ; Qing-Ai LIU ; Li-He ZHANG ; Wei-Li GONG
Progress in Biochemistry and Biophysics 2025;52(2):374-394
Immobilized enzyme-based enzyme electrode biosensors, characterized by high sensitivity and efficiency, strong specificity, and compact size, demonstrate broad application prospects in life science research, disease diagnosis and monitoring, etc. Immobilization of enzyme is a critical step in determining the performance (stability, sensitivity, and reproducibility) of the biosensors. Random immobilization (physical adsorption, covalent cross-linking, etc.) can easily bring about problems, such as decreased enzyme activity and relatively unstable immobilization. Whereas, directional immobilization utilizing amino acid residue mutation, affinity peptide fusion, or nucleotide-specific binding to restrict the orientation of the enzymes provides new possibilities to solve the problems caused by random immobilization. In this paper, the principles, advantages and disadvantages and the application progress of enzyme electrode biosensors of different directional immobilization strategies for enzyme molecular sensing elements by specific amino acids (lysine, histidine, cysteine, unnatural amino acid) with functional groups introduced based on site-specific mutation, affinity peptides (gold binding peptides, carbon binding peptides, carbohydrate binding domains) fused through genetic engineering, and specific binding between nucleotides and target enzymes (proteins) were reviewed, and the application fields, advantages and limitations of various immobilized enzyme interface characterization techniques were discussed, hoping to provide theoretical and technical guidance for the creation of high-performance enzyme sensing elements and the manufacture of enzyme electrode sensors.
3.Terms Related to The Study of Biomacromolecular Condensates
Ke RUAN ; Xiao-Feng FANG ; Dan LI ; Pi-Long LI ; Yi LIN ; Zheng WANG ; Yun-Yu SHI ; Ming-Jie ZHANG ; Hong ZHANG ; Cong LIU
Progress in Biochemistry and Biophysics 2025;52(4):1027-1035
Biomolecular condensates are formed through phase separation of biomacromolecules such as proteins and RNAs. These condensates exhibit liquid-like properties that can futher transition into more stable material states. They form complex internal structures via multivalent weak interactions, enabling precise spatiotemporal regulations. However, the use of inconsistent and non-standardized terminology has become increasingly problematic, hindering academic exchange and the dissemination of scientific knowledge. Therefore, it is necessary to discuss the terminology related to biomolecular condensates in order to clarify concepts, promote interdisciplinary cooperation, enhance research efficiency, and support the healthy development of this field.
4.A Case Report of Pachydermoperiostosis by Multidisciplinary Diagnosis and Treatment
Jie ZHANG ; Yan ZHANG ; Li HUO ; Ke LYU ; Tao WANG ; Ze'nan XIA ; Xiao LONG ; Kexin XU ; Nan WU ; Bo YANG ; Weibo XIA ; Rongrong HU ; Limeng CHEN ; Ji LI ; Xia HONG ; Yan ZHANG ; Yagang ZUO
JOURNAL OF RARE DISEASES 2025;4(1):75-82
A 20-year-old male patient presented to the Department of Dermatology of Peking Union Medical College Hospital with complaints of an 8-year history of facial scarring, swelling of the lower limbs, and a 4-year history of scalp thickening. Physical examination showed thickening furrowing wrinkling of the skin on the face and behind the ears, ciliary body hirsutism, blepharoptosis, and cutis verticis gyrate. Both lower limbs were swollen, especially the knees and ankles. The skin of the palms and soles of the feet was keratinized and thickened. Laboratory examination using bone and joint X-ray showed periostosis of the proximal middle phalanges and metacarpals of both hands, distal ulna and radius, tibia and fibula, distal femurs, and metatarsals.Genetic testing revealed two variants in
5.The Near-infrared II Emission of Gold Clusters and Their Applications in Biomedicine
Zhen-Hua LI ; Hui-Zhen MA ; Hao WANG ; Chang-Long LIU ; Xiao-Dong ZHANG
Progress in Biochemistry and Biophysics 2025;52(8):2068-2086
Optical imaging is highly valued for its superior temporal and spatial resolution. This is particularly important in near-infrared II (NIR-II, 1 000-3 000 nm) imaging, which offers advantages such as reduced tissue absorption, minimal scattering, and low autofluorescence. These characteristics make NIR-II imaging especially suitable for deep tissue visualization, where high contrast and minimal background interference are critical for accurate diagnosis and monitoring. Currently, inorganic fluorescent probes—such as carbon nanotubes, rare earth nanoparticles, and quantum dots—offer high brightness and stability. However, they are hindered by ambiguous structures, larger sizes, and potential accumulation toxicity in vivo. In contrast, organic fluorescent probes, including small molecules and polymers, demonstrate higher biocompatibility but are limited by shorter emission wavelengths, lower quantum yields, and reduced stability. Recently, gold clusters have emerged as a promising class of nanomaterials with potential applications in biocatalysis, fluorescence sensing, biological imaging, and more. Water-soluble gold clusters are particularly attractive as fluorescent probes due to their remarkable optical properties, including strong photoluminescence, large Stokes shifts, and excellent photostability. Furthermore, their outstanding biocompatibility—attributed to good aqueous stability, ultra-small hydrodynamic size, and high renal clearance efficiency—makes them especially suitable for biomedical applications. Gold clusters hold significant potential for NIR-II fluorescence imaging. Atomic-precision gold clusters, typically composed of tens to hundreds of gold atoms and measuring only a few nanometers in diameter, possess well-defined three-dimensional structures and clear spatial coordination. This atomic-level precision enables fine-tuned structural regulation, further enhancing their fluorescence properties. Variations in cluster size, surface ligands, and alloying elements can result in distinct physicochemical characteristics. The incorporation of different atoms can modulate the atomic and electronic structures of gold clusters, while diverse ligands can influence surface polarity and steric hindrance. As such, strategies like alloying and ligand engineering are effective in enhancing both fluorescence and catalytic performance, thereby meeting a broader range of clinical needs. In recent years, gold clusters have attracted growing attention in the biomedical field. Their application in NIR-II imaging has led to significant progress in vascular, organ, and tumor imaging. The resulting high-resolution, high signal-to-noise imaging provides powerful tools for clinical diagnostics. Moreover, biologically active gold clusters can aid in drug delivery and disease diagnosis and treatment, offering new opportunities for clinical therapeutics. Despite the notable achievements in fundamental research and clinical translation, further studies are required to address challenges related to the standardized synthesis and complex metabolic behavior of gold clusters. Resolving these issues will help accelerate their clinical adoption and broaden their biomedical applications.
6. Effects of HMGB1 on phenotypes, phagocytosis and ERK/JNK/P38 MAPK signaling pathway in dendritic cells
Ying-Ying CHEN ; Zhi-Xiang MOU ; Xiao-Long HU ; Yi-Yan ZHANG ; Jiao-Qing WENG ; Tian-Jun GUAN ; Ying-Ying CHEN ; Lan CHEN ; Tian-Jun GUAN ; Lan CHEN ; Pei-Yu LYU
Chinese Pharmacological Bulletin 2024;40(2):248-255
Aim To explore the impacts of high mobility group box 1 (HMGB1) on the phenotypes, endocy-tosis and extracellular signal-regulated kinase (ERK)/ Jun N-terminal protein kinase (JNK)/P38 mitogen-ac-tivated protein kinase (MAPK) signaling pathway in indoxyl sulfate (IS) -induced dendritic cells (DCs). Methods After treatment with 30, 300 and 600 (xmol · L
7.Stability study of umbilical cord mesenchymal stem cells formulation in large-scale production
Wang-long CHU ; Tong-jing LI ; Yan SHANGGUAN ; Fang-tao HE ; Jian-fu WU ; Xiu-ping ZENG ; Tao GUO ; Qing-fang WANG ; Fen ZHANG ; Zhen-zhong ZHONG ; Xiao LIANG ; Jun-yuan HU ; Mu-yun LIU
Acta Pharmaceutica Sinica 2024;59(3):743-750
Umbilical cord mesenchymal stem cells (UC-MSCs) have been widely used in regenerative medicine, but there is limited research on the stability of UC-MSCs formulation during production. This study aims to assess the stability of the cell stock solution and intermediate product throughout the production process, as well as the final product following reconstitution, in order to offer guidance for the manufacturing process and serve as a reference for formulation reconstitution methods. Three batches of cell formulation were produced and stored under low temperature (2-8 ℃) and room temperature (20-26 ℃) during cell stock solution and intermediate product stages. The storage time intervals for cell stock solution were 0, 2, 4, and 6 h, while for intermediate products, the intervals were 0, 1, 2, and 3 h. The evaluation items included visual inspection, viable cell concentration, cell viability, cell surface markers, lymphocyte proliferation inhibition rate, and sterility. Additionally, dilution and culture stability studies were performed after reconstitution of the cell product. The reconstitution diluents included 0.9% sodium chloride injection, 0.9% sodium chloride injection + 1% human serum albumin, and 0.9% sodium chloride injection + 2% human serum albumin, with dilution ratios of 10-fold and 40-fold. The storage time intervals after dilution were 0, 1, 2, 3, and 4 h. The reconstitution culture media included DMEM medium, DMEM + 2% platelet lysate, 0.9% sodium chloride injection, and 0.9% sodium chloride injection + 1% human serum albumin, and the culture duration was 24 h. The evaluation items were viable cell concentration and cell viability. The results showed that the cell stock solution remained stable for up to 6 h under both low temperature (2-8 ℃) and room temperature (20-26 ℃) conditions, while the intermediate product remained stable for up to 3 h under the same conditions. After formulation reconstitution, using sodium chloride injection diluted with 1% or 2% human serum albumin maintained a viability of over 80% within 4 h. It was observed that different dilution factors had an impact on cell viability. After formulation reconstitution, cultivation in medium with 2% platelet lysate resulted in a cell viability of over 80% after 24 h. In conclusion, the stability of cell stock solution within 6 h and intermediate product within 3 h meets the requirements. The addition of 1% or 2% human serum albumin in the reconstitution diluent can better protect the post-reconstitution cell viability.
8.Study on the potential allergen and mechanism of pseudo-allergic reactions induced by combined using of Reduning injection and penicillin G injection based on metabolomics and bioinformatics
Yu-long CHEN ; You ZHAI ; Xiao-yan WANG ; Wei-xia LI ; Hui ZHANG ; Ya-li WU ; Liu-qing YANG ; Xiao-fei CHEN ; Shu-qi ZHANG ; Lu NIU ; Ke-ran FENG ; Kun LI ; Jin-fa TANG ; Ming-liang ZHANG
Acta Pharmaceutica Sinica 2024;59(2):382-394
Based on the strategy of metabolomics combined with bioinformatics, this study analyzed the potential allergens and mechanism of pseudo-allergic reactions (PARs) induced by the combined use of Reduning injection and penicillin G injection. All animal experiments and welfare are in accordance with the requirements of the First Affiliated Experimental Animal Ethics and Animal Welfare Committee of Henan University of Chinese Medicine (approval number: YFYDW2020002). Based on UPLC-Q-TOF/MS technology combined with UNIFI software, a total of 21 compounds were identified in Reduning and penicillin G mixed injection. Based on molecular docking technology, 10 potential allergens with strong binding activity to MrgprX2 agonist sites were further screened. Metabolomics analysis using UPLC-Q-TOF/MS technology revealed that 34 differential metabolites such as arachidonic acid, phosphatidylcholine, phosphatidylserine, prostaglandins, and leukotrienes were endogenous differential metabolites of PARs caused by combined use of Reduning injection and penicillin G injection. Through the analysis of the "potential allergen-target-endogenous differential metabolite" interaction network, the chlorogenic acids (such as chlorogenic acid, neochlorogenic acid, cryptochlorogenic acid, and isochlorogenic acid A) and
9.Based on the interaction between supramolecules of traditional Chinese medicine and enterobacteria to explore the material basis of combination of Rhei Radix et Rhizoma - Coptidis Rhizoma
Xiao-yu LIN ; Ji-hui LU ; Yao-zhi ZHANG ; Wen-min PI ; Zhi-jia WANG ; Lin-ying WU ; Xue-mei HUANG ; Peng-long WANG
Acta Pharmaceutica Sinica 2024;59(2):464-475
Based on the interaction between supramolecule of traditional Chinese medicine and enterobacteria, the material basis of
10.Trends in the prevalence of common chronic diseases among workers of automotive industry in 2019 - 2021
Xiaoyi QIAN ; Wenwen WU ; Simin ZHANG ; Chunmei XIAO ; Long CHEN ; Xiulong LI
Journal of Public Health and Preventive Medicine 2024;35(3):82-85
Objective To analyze the prevalence, annual trends, and co-morbidity trends of common chronic diseases among workers in a large automotive industry from 2019 to 2021, and to provide a scientific basis for the health management of workers in the automotive industry. Methods The health examination data of workers in a large automotive industry from 2019-2021 were analyzed. Trends in the prevalence of chronic diseases and co-morbidities were analyzed using Join Point software and trend χ2 test. Results The prevalence of metabolic syndrome, hyperuricemia, and fatty liver in the 2019 – 2021 health checkups of workers in this enterprise increased at an average rate of 9.27%, 11.35%, and 3.99% per year, respectively. The prevalence of metabolic syndrome, hyperuricemia, and fatty liver in male workers showed an increasing trend at an average rate of 7.05%, 9.25%, and 2.91% per year, respectively. The prevalence of metabolic syndrome in female workers showed an increasing trend at an average rate of 20.76% per year. The prevalence of metabolic syndrome, hyperuricemia and fatty liver was on the rise in the age groups ≤ 29 years old and 40 – 49 years old. The proportion of metabolic syndrome and its co-morbidity with one or two common chronic diseases showed an increasing trend. Conclusion The prevalence and co-morbidity of common chronic diseases in this enterprise are generally on the rise. The enterprise should focus on health education and preventive care for chronic diseases among workers aged ≤ 29 and 40 – 49 years old and male workers and control the annual increasing trend of metabolic syndrome among female workers and workers in the age group ≤ 29 years.


Result Analysis
Print
Save
E-mail