1.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
2.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
3.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
4.Untargeted Metabolomics Reveals Mechanism of Modified Sinisan in Ameliorating Anxiety-like Behaviors Induced by Chronic Restraint Stress in Mice
Jie ZHAO ; Zhengyu FANG ; He XIAO ; Na GUO ; Hongwei WU ; Hongjun YANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):70-79
ObjectiveTo elucidate the potential mechanism of modified Sinisan (MSNS) in alleviating anxiety-like behaviors induced by chronic restraint stress (CRS) in mice at the metabolic level based on serum untargeted metabolomics and identify key metabolites and metabolic pathways regulated by MSNS. MethodsSeventy-two male C57BL/6 mice were randomly assigned into six groups: control, model, high-dose (2.4 g·kg-1) MSNS, medium-dose (1.2 g·kg-1) MSNS, low-dose (0.6 g·kg-1) MSNS, and positive control (fluoxetine, 2.6 mg·kg-1). Except the control group, the other groups were subjected to CRS for the modeling of anxiety. Mice were administrated with corresponding agents by gavage 2 h before daily restraint for 14 days. Anxiety-like behaviors were evaluated by the open field test (OFT), elevated plus maze (EPM) test, and light/dark box (LDB) test. Serum levels of corticotropin-releasing hormone (CRH), adrenocorticotrophic hormone (ACTH), and corticosterone (CORT) were measured via ELISA to assess stress levels. Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was employed to detect 9 metabolites in the brain tissue and serum metabolites. Orthogonal partial least squares-discriminant analysis (OPLS-DA) was adopted to identify differential metabolites (VIP>1.0, P<0.05). MetaboAnalyst 5.0 was used for metabolic pathway enrichment analysis of the differential metabolites. ResultsCompared with the control group, the model group showed reductions in the central activity time and central distance in the OFT (P<0.05), the proportions of open-arm residence time and open-arm residence times in the EPM test (P<0.01), and the proportions of open box activity time and open box activity distance in the LDB test (P<0.05), which were increased in the medium- and high-dose MSNS groups compared with the model group (P<0.05). Compared with the control group, the model group showed elevated levels of CRH, ACTH, and CORT in the serum (P<0.01), and the elevations were diminished in the medium- and high-dose MSNS groups (P<0.05). UPLC-MS results indicated that compared with the control group, the model group presented declined DA, GABA, 5-HIAA, 5-HT, and 5-HT/Trp levels (P<0.05, P<0.01) and raised Glu, NE, Kyn, and Kyn/Trp levels (P<0.05). Compared with the model group, high-dose MSNS increased the GABA, 5-HIAA, and 5-HT/Trp levels (P<0.05) and lowered the Glu and Kyn/Trp levels (P<0.05). Untargeted metabolomics identified that 16 CRS-induced metabolic disturbances were reversed by MSNS. KEGG pathway analysis indicated that MSNS primarily modulated eight core pathways including alanine/aspartate/glutamate metabolism, butyrate metabolism, arginine-proline metabolism, TCA cycle, unsaturated fatty acid biosynthesis, and tryptophan metabolism. The mechanisms involved multidimensional biological processes, including neurotransmitter homeostasis regulation, TCA cycle energy metabolism optimization, and inflammatory response suppression. ConclusionMSNS alleviates CRS-induced anxiety-like behaviors in mice by mitigating hypothalamic-pituitary-adrenal axis hyperactivity, improving hippocampal neurotransmitter and tryptophan metabolic pathways, and regulating alanine/aspartate/glutamate metabolism, butyrate metabolism, arginine-proline metabolism, and TCA cycle.
5.Untargeted Metabolomics Reveals Mechanism of Modified Sinisan in Ameliorating Anxiety-like Behaviors Induced by Chronic Restraint Stress in Mice
Jie ZHAO ; Zhengyu FANG ; He XIAO ; Na GUO ; Hongwei WU ; Hongjun YANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):70-79
ObjectiveTo elucidate the potential mechanism of modified Sinisan (MSNS) in alleviating anxiety-like behaviors induced by chronic restraint stress (CRS) in mice at the metabolic level based on serum untargeted metabolomics and identify key metabolites and metabolic pathways regulated by MSNS. MethodsSeventy-two male C57BL/6 mice were randomly assigned into six groups: control, model, high-dose (2.4 g·kg-1) MSNS, medium-dose (1.2 g·kg-1) MSNS, low-dose (0.6 g·kg-1) MSNS, and positive control (fluoxetine, 2.6 mg·kg-1). Except the control group, the other groups were subjected to CRS for the modeling of anxiety. Mice were administrated with corresponding agents by gavage 2 h before daily restraint for 14 days. Anxiety-like behaviors were evaluated by the open field test (OFT), elevated plus maze (EPM) test, and light/dark box (LDB) test. Serum levels of corticotropin-releasing hormone (CRH), adrenocorticotrophic hormone (ACTH), and corticosterone (CORT) were measured via ELISA to assess stress levels. Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was employed to detect 9 metabolites in the brain tissue and serum metabolites. Orthogonal partial least squares-discriminant analysis (OPLS-DA) was adopted to identify differential metabolites (VIP>1.0, P<0.05). MetaboAnalyst 5.0 was used for metabolic pathway enrichment analysis of the differential metabolites. ResultsCompared with the control group, the model group showed reductions in the central activity time and central distance in the OFT (P<0.05), the proportions of open-arm residence time and open-arm residence times in the EPM test (P<0.01), and the proportions of open box activity time and open box activity distance in the LDB test (P<0.05), which were increased in the medium- and high-dose MSNS groups compared with the model group (P<0.05). Compared with the control group, the model group showed elevated levels of CRH, ACTH, and CORT in the serum (P<0.01), and the elevations were diminished in the medium- and high-dose MSNS groups (P<0.05). UPLC-MS results indicated that compared with the control group, the model group presented declined DA, GABA, 5-HIAA, 5-HT, and 5-HT/Trp levels (P<0.05, P<0.01) and raised Glu, NE, Kyn, and Kyn/Trp levels (P<0.05). Compared with the model group, high-dose MSNS increased the GABA, 5-HIAA, and 5-HT/Trp levels (P<0.05) and lowered the Glu and Kyn/Trp levels (P<0.05). Untargeted metabolomics identified that 16 CRS-induced metabolic disturbances were reversed by MSNS. KEGG pathway analysis indicated that MSNS primarily modulated eight core pathways including alanine/aspartate/glutamate metabolism, butyrate metabolism, arginine-proline metabolism, TCA cycle, unsaturated fatty acid biosynthesis, and tryptophan metabolism. The mechanisms involved multidimensional biological processes, including neurotransmitter homeostasis regulation, TCA cycle energy metabolism optimization, and inflammatory response suppression. ConclusionMSNS alleviates CRS-induced anxiety-like behaviors in mice by mitigating hypothalamic-pituitary-adrenal axis hyperactivity, improving hippocampal neurotransmitter and tryptophan metabolic pathways, and regulating alanine/aspartate/glutamate metabolism, butyrate metabolism, arginine-proline metabolism, and TCA cycle.
6.Development of an in vitro screening method for idiosyncratic hepatotoxic components in traditional Chinese medicine: a case study with Epimedii Folium and Psoraleae Fructus
Ying-ying LI ; Meng-meng LIN ; Bo CAO ; Ying LI ; Jing XU ; Xiao-he XIAO ; Guo-hui LI ; Chun-yu LI
Acta Pharmaceutica Sinica 2024;59(3):621-632
Idiosyncratic drug-induced liver injury (IDILI) has long posed a challenging and pivotal concern in pharmaceutical research. The complex composition of traditional Chinese medicine (TCM) has introduced a bottleneck in current research, hindering the elucidation of the component basis associated with IDILI in TCM. Using
7.Stability study of umbilical cord mesenchymal stem cells formulation in large-scale production
Wang-long CHU ; Tong-jing LI ; Yan SHANGGUAN ; Fang-tao HE ; Jian-fu WU ; Xiu-ping ZENG ; Tao GUO ; Qing-fang WANG ; Fen ZHANG ; Zhen-zhong ZHONG ; Xiao LIANG ; Jun-yuan HU ; Mu-yun LIU
Acta Pharmaceutica Sinica 2024;59(3):743-750
Umbilical cord mesenchymal stem cells (UC-MSCs) have been widely used in regenerative medicine, but there is limited research on the stability of UC-MSCs formulation during production. This study aims to assess the stability of the cell stock solution and intermediate product throughout the production process, as well as the final product following reconstitution, in order to offer guidance for the manufacturing process and serve as a reference for formulation reconstitution methods. Three batches of cell formulation were produced and stored under low temperature (2-8 ℃) and room temperature (20-26 ℃) during cell stock solution and intermediate product stages. The storage time intervals for cell stock solution were 0, 2, 4, and 6 h, while for intermediate products, the intervals were 0, 1, 2, and 3 h. The evaluation items included visual inspection, viable cell concentration, cell viability, cell surface markers, lymphocyte proliferation inhibition rate, and sterility. Additionally, dilution and culture stability studies were performed after reconstitution of the cell product. The reconstitution diluents included 0.9% sodium chloride injection, 0.9% sodium chloride injection + 1% human serum albumin, and 0.9% sodium chloride injection + 2% human serum albumin, with dilution ratios of 10-fold and 40-fold. The storage time intervals after dilution were 0, 1, 2, 3, and 4 h. The reconstitution culture media included DMEM medium, DMEM + 2% platelet lysate, 0.9% sodium chloride injection, and 0.9% sodium chloride injection + 1% human serum albumin, and the culture duration was 24 h. The evaluation items were viable cell concentration and cell viability. The results showed that the cell stock solution remained stable for up to 6 h under both low temperature (2-8 ℃) and room temperature (20-26 ℃) conditions, while the intermediate product remained stable for up to 3 h under the same conditions. After formulation reconstitution, using sodium chloride injection diluted with 1% or 2% human serum albumin maintained a viability of over 80% within 4 h. It was observed that different dilution factors had an impact on cell viability. After formulation reconstitution, cultivation in medium with 2% platelet lysate resulted in a cell viability of over 80% after 24 h. In conclusion, the stability of cell stock solution within 6 h and intermediate product within 3 h meets the requirements. The addition of 1% or 2% human serum albumin in the reconstitution diluent can better protect the post-reconstitution cell viability.
8.Detection of 14 sulfonate esters impurities of active pharmaceutical ingredients based on GC-MS/MS and LC-MS/MS
Die LIU ; Xiao-xiao PENG ; Jing-mei FANG ; Fan YANG ; Fang HE ; Min CHEN ; Lan LIN ; Guo-wei WANG
Acta Pharmaceutica Sinica 2024;59(2):424-431
Two methods including gas chromatography tandem mass spectrometry (GC-MS/MS) and high-performance liquid chromatography tandem mass spectrometry (LC-MS/MS) were established to detect common alkyl sulfonates and aryl sulfonates genotoxic impurities. Four alkyl sulfonates and methyl benzenesulfonate were determined by GC-MS/MS using butyl methanesulfonate as the internal standard, the chromatographic column was HP-5MS UI (30 mm × 0.25 mm, 0.25 µm), the carrier gas was helium, the flow rate was 1.0 mL·min-1 in a constant flow mode, the sample inlet temperature was set to 250 ℃, the split ratio was 10∶1, and the initial temperature of the heating program was 80 ℃, maintained for 1 minute, and then increased to 240 ℃ at a heating rate of 30 ℃·min-1 for 2 minutes. The mass spectrometry detector was an electron bombardment ion source (EI source), the data collection condition was multi reaction monitoring mode (MRM), and method validation using the raw material of clinical drug citalopram hydrobromide as a sample. The results showed that the linear range of four alkyl sulfonates and methyl benzenesulfonate were good at 3-50 ng·mL-1 and 9-150 ng·mL-1, with a correlation coefficient of
9.Prediction and evaluation of nomogram model on risk of hyperuricemia in overweight and obese children and adolescents
Jianying JING ; Ningting XIAO ; Xuemei GUO ; Xueming JING ; Rong XIE ; Yonglong HE
Chongqing Medicine 2024;53(2):220-225
Objective To establish a nomogram prediction model of hyperuricemia(HUA)onset risk in overweight and obese children and adolescents in order to provide reference for the prevention and treatment of HUA in this population.Methods The clinical data of 1 410 overweight and obese children and adolescents aged 6-17 years old visiting in this hospital from September 2021 to August 2022 were retrospectively analyzed.A total of 987 overweight and obese children and adolescents were randomly extracted according to a ratio of 7:3 to establish the model,and the remaining 423 cases were validated internally.Referring to the definition of high uric acid in"Zhu-futang Practical Pediatrics",the subjects were divided into high uric acid group and non-high uric acid group.The logis-tic regression analysis was used to analyze the influencing factors of HUA in overweight and obese children and adoles-cents.The nomogram model was constructed by using the R language.The area under the receiver operating character-istic(ROC)curve(AUC),decision analysis curve(DIC),clinical impact curve(CIC)and C-index were used to evalu-ate the predictive ability of the model,and the Bootstrap repeated sampling method(taking samples for 1000 times)was used for internal validation of the model.Results The results of multivariate analysis showed that the age(OR=2.324,95%CI:1.155-4.672,P=0.018),gender(OR=0.456,95%CI:0.256-0.810,P=0.007),triglycerides(OR=3.775,95%CI:2.321-6.138,P<0.001),blood calcium(OR=26.986,95%CI:3.186-228.589,P=0.003)and blood creatinine(OR=1.047,95%CI:1.026-1.070,P<0.001)were the influen-cing factors of HUA in overweight and obese children and adolescents.AUC of the ROC curve of the model was 0.840,the sensitivity was 0.786,the specificity was 0.762,the Youden index was 0.548,and the C-index was 0.840.The risk probability of DC A was 0.1-0.8,the net benefit rate of both models was>0,AUC of ROC curve in the internal verification was 0.871.Conclusion The constructed nomogram in this study has a good predictive efficiency for the onset risk of HUA in overweight and obese children and adolescents,and may provide reference for the early diagnosis and treatment of this population.
10.Prenatal diagnostic value of MRI in fetal Chiari malformation
Yan ZHUANG ; Chang-An CHEN ; He ZHANG ; Xiao-Wei HUANG ; Guo-Fu ZHANG
Fudan University Journal of Medical Sciences 2024;51(2):191-197,217
Objective To evaluate the value of magnetic resonance imaging(MRI)in prenatal diagnosis of fetal Chiari malformation.Methods The prenatal MRI findings of 27 cases of Chiari malformation confirmed by follow-up in Obstetrics and Gynecology Hospital,Fudan University from Feb 2010 to Feb 2022 were retrospectively analyzed and compared with ultrasound findings.Results Twenty-seven pregnant women,aged from 16-36 years(average 28.0 years)and 27 fetuses with gestation from 15.3-38.4 weeks(average 24.3 weeks)were studied.There were 18 cases of Chiari Ⅱ(Chiari malformation type Ⅱ,CMⅡ),3 cases of Chiari Ⅲ(CMⅢ),6 cases of Chiari Ⅳ(CMⅣ).CMⅡ and CMⅢ images showed brain herniation,descending pons,narrowing or disappearance of the posterior fossa cistern and the fourth ventricle,the subarachnoid space disappears.There were 17 cases of hydrocephalus,2 cases of cerebrospinal fluid loss,17 cases of"lemon head"and"banana cerebellar"signs,4 cases of encephalocele,15 cases of spinal bifida,3 cases of lower spinal cord and 2 cases of spinal cavity,4 cases of spinal angular deformity and 6 cases of other malformations.In CMⅣ,there were 2 cases of undeveloped cerebellum and 4 cases of cerebellum and brainstem dysplasia,hydrocephalus in 5 cases,posterior fossa cistern widening in 4 cases,and other malformations in 4 cases.MRI showed the posterior fossa structure and spinal cord more clearly than ultrasound,and could find lesions not detected by ultrasound.Conclusion Prenatal MRI can be used as a complementary examination of ultrasound,which can improve the accuracy of diagnosis of Chiari malformation,reduce the rate of missed diagnosis,and clarify the classification of Chiari malformation.

Result Analysis
Print
Save
E-mail