1.Exploring the safety and the countermeasures of rational use of Psoraleae Fructus based on the evolution of efficacy/toxicity records in ancient and modern literature
Ying-jie XU ; Xiao-yan ZHAN ; Zhao-fang BAI ; Xiao-he XIAO
Acta Pharmaceutica Sinica 2025;60(2):314-322
Psoraleae Fructus is derived from the dried fruit of the
2.Molecular Mechanisms of RNA Modification Interactions and Their Roles in Cancer Diagnosis and Treatment
Jia-Wen FANG ; Chao ZHE ; Ling-Ting XU ; Lin-Hai LI ; Bin XIAO
Progress in Biochemistry and Biophysics 2025;52(9):2252-2266
RNA modifications constitute a crucial class of post-transcriptional chemical alterations that profoundly influence RNA stability and translational efficiency, thereby shaping cellular protein expression profiles. These diverse chemical marks are ubiquitously involved in key biological processes, including cell proliferation, differentiation, apoptosis, and metastatic potential, and they exert precise regulatory control over these functions. A major advance in the field is the recognition that RNA modifications do not act in isolation. Instead, they participate in complex, dynamic interactions—through synergistic enhancement, antagonism, competitive binding, and functional crosstalk—forming what is now termed the “RNA modification interactome” or “RNA modification interaction network.” The formation and functional operation of this interactome rely on a multilayered regulatory framework orchestrated by RNA-modifying enzymes—commonly referred to as “writers,” “erasers,” and “readers.” These enzymes exhibit hierarchical organization within signaling cascades, often functioning in upstream-downstream sequences and converging at critical regulatory nodes. Their integration is further mediated through shared regulatory elements or the assembly into multi-enzyme complexes. This intricate enzymatic network directly governs and shapes the interdependent relationships among various RNA modifications. This review systematically elucidates the molecular mechanisms underlying both direct and indirect interactions between RNA modifications. Building upon this foundation, we introduce novel quantitative assessment frameworks and predictive disease models designed to leverage these interaction patterns. Importantly, studies across multiple disease contexts have identified core downstream signaling axes driven by specific constellations of interacting RNA modifications. These findings not only deepen our understanding of how RNA modification crosstalk contributes to disease initiation and progression, but also highlight its translational potential. This potential is exemplified by the discovery of diagnostic biomarkers based on interaction signatures and the development of therapeutic strategies targeting pathogenic modification networks. Together, these insights provide a conceptual framework for understanding the dynamic and multidimensional regulatory roles of RNA modifications in cellular systems. In conclusion, the emerging concept of RNA modification crosstalk reveals the extraordinary complexity of post-transcriptional regulation and opens new research avenues. It offers critical insights into the central question of how RNA-modifying enzymes achieve substrate specificity—determining which nucleotides within specific RNA transcripts are selectively modified during defined developmental or pathological stages. Decoding these specificity determinants, shaped in large part by the modification interactome, is essential for fully understanding the biological and pathological significance of the epitranscriptome.
3.Adolescent Smoking Addiction Diagnosis Based on TI-GNN
Xu-Wen WANG ; Da-Hua YU ; Ting XUE ; Xiao-Jiao LI ; Zhen-Zhen MAI ; Fang DONG ; Yu-Xin MA ; Juan WANG ; Kai YUAN
Progress in Biochemistry and Biophysics 2025;52(9):2393-2405
ObjectiveTobacco-related diseases remain one of the leading preventable public health challenges worldwide and are among the primary causes of premature death. In recent years, accumulating evidence has supported the classification of nicotine addiction as a chronic brain disease, profoundly affecting both brain structure and function. Despite the urgency, effective diagnostic methods for smoking addiction remain lacking, posing significant challenges for early intervention and treatment. To address this issue and gain deeper insights into the neural mechanisms underlying nicotine dependence, this study proposes a novel graph neural network framework, termed TI-GNN. This model leverages functional magnetic resonance imaging (fMRI) data to identify complex and subtle abnormalities in brain connectivity patterns associated with smoking addiction. MethodsThe study utilizes fMRI data to construct functional connectivity matrices that represent interaction patterns among brain regions. These matrices are interpreted as graphs, where brain regions are nodes and the strength of functional connectivity between them serves as edges. The proposed TI-GNN model integrates a Transformer module to effectively capture global interactions across the entire brain network, enabling a comprehensive understanding of high-level connectivity patterns. Additionally, a spatial attention mechanism is employed to selectively focus on informative inter-regional connections while filtering out irrelevant or noisy features. This design enhances the model’s ability to learn meaningful neural representations crucial for classification tasks. A key innovation of TI-GNN lies in its built-in causal interpretation module, which aims to infer directional and potentially causal relationships among brain regions. This not only improves predictive performance but also enhances model interpretability—an essential attribute for clinical applications. The identification of causal links provides valuable insights into the neuropathological basis of addiction and contributes to the development of biologically plausible and trustworthy diagnostic tools. ResultsExperimental results demonstrate that the TI-GNN model achieves superior classification performance on the smoking addiction dataset, outperforming several state-of-the-art baseline models. Specifically, TI-GNN attains an accuracy of 0.91, an F1-score of 0.91, and a Matthews correlation coefficient (MCC) of 0.83, indicating strong robustness and reliability. Beyond performance metrics, TI-GNN identifies critical abnormal connectivity patterns in several brain regions implicated in addiction. Notably, it highlights dysregulations in the amygdala and the anterior cingulate cortex, consistent with prior clinical and neuroimaging findings. These regions are well known for their roles in emotional regulation, reward processing, and impulse control—functions that are frequently disrupted in nicotine dependence. ConclusionThe TI-GNN framework offers a powerful and interpretable tool for the objective diagnosis of smoking addiction. By integrating advanced graph learning techniques with causal inference capabilities, the model not only achieves high diagnostic accuracy but also elucidates the neurobiological underpinnings of addiction. The identification of specific abnormal brain networks and their causal interactions deepens our understanding of addiction pathophysiology and lays the groundwork for developing targeted intervention strategies and personalized treatment approaches in the future.
4.Application Study of Enzyme Inhibitors and Their Conformational Optimization in The Treatment of Alzheimer’s Disease
Chao-Yang CHU ; Biao XIAO ; Jiang-Hui SHAN ; Shi-Yu CHEN ; Chu-Xia ZHANG ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Zhi-Cheng LIN ; Kai XIE ; Shu-Jun XU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2024;51(7):1510-1529
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive dysfunction and behavioral impairment, and there is a lack of effective drugs to treat AD clinically. Existing medications for the treatment of AD, such as Tacrine, Donepezil, Rivastigmine, and Aducanumab, only serve to delay symptoms and but not cure disease. To add insult to injury, these medications are associated with very serious adverse effects. Therefore, it is urgent to explore effective therapeutic drugs for AD. Recently, studies have shown that a variety of enzyme inhibitors, such as cholinesterase inhibitors, monoamine oxidase (MAO)inhibitors, secretase inhibitors, can ameliorate cholinergic system dysfunction, Aβ production and deposition, Tau protein hyperphosphorylation, oxidative stress damage, and the decline of synaptic plasticity, thereby improving AD symptoms and cognitive function. Some plant extracts from natural sources, such as Umbelliferone, Aaptamine, Medha Plus, have the ability to inhibit cholinesterase activity and act to improve learning and cognition. Isochromanone derivatives incorporating the donepezil pharmacophore bind to the catalytic active site (CAS) and peripheral anionic site (PAS) sites of acetylcholinesterase (AChE), which can inhibit AChE activity and ameliorate cholinergic system disorders. A compound called Rosmarinic acid which is found in the Lamiaceae can inhibit monoamine oxidase, increase monoamine levels in the brain, and reduce Aβ deposition. Compounds obtained by hybridization of coumarin derivatives and hydroxypyridinones can inhibit MAO-B activity and attenuate oxidative stress damage. Quinoline derivatives which inhibit the activation of AChE and MAO-B can reduce Aβ burden and promote learning and memory of mice. The compound derived from the combination of propargyl and tacrine retains the inhibitory capacity of tacrine towards cholinesterase, and also inhibits the activity of MAO by binding to the FAD cofactor of monoamine oxidase. A series of hybrids, obtained by an amide linker of chromone in combine with the benzylpiperidine moieties of donepezil, have a favorable safety profile of both cholinesterase and monoamine oxidase inhibitory activity. Single domain antibodies (such as AAV-VHH) targeted the inhibition of BACE1 can reduce Aβ production and deposition as well as the levels of inflammatory cells, which ultimately improve synaptic plasticity. 3-O-trans-p-coumaroyl maslinic acid from the extract of Ligustrum lucidum can specifically inhibit the activity of γ-secretase, thereby rescuing the long-term potentiation and enhancing synaptic plasticity in APP/PS1 mice. Inhibiting γ-secretase activity which leads to the decline of inflammatory factors (such as IFN-γ, IL-8) not only directly improves the pathology of AD, but also reduces Aβ production. Melatonin reduces the transcriptional expression of GSK-3β mRNA, thereby decreasing the levels of GSK-3β and reducing the phosphorylation induced by GSK-3β. Hydrogen sulfide can inhibitGSK-3β activity via sulfhydration of the Cys218 site of GSK-3β, resulting in the suppression of Tau protein hyperphosphorylation, which ameliorate the motor deficits and cognitive impairment in mice with AD. This article reviews enzyme inhibitors and conformational optimization of enzyme inhibitors targeting the regulation of cholinesterase, monoamine oxidase, secretase, and GSK-3β. We are hoping to provide a comprehensive overview of drug development in the enzyme inhibitors, which may be useful in treating AD.
5.Investigation and analysis of the current status of transjugular intrahepatic portosystemic shunt treatment for portal hypertension in China
Haozhuo GUO ; Meng NIU ; Haibo SHAO ; Xinwei HAN ; Jianbo ZHAO ; Junhui SUN ; Zhuting FANG ; Bin XIONG ; Xiaoli ZHU ; Weixin REN ; Min YUAN ; Shiping YU ; Weifu LYU ; Xueqiang ZHANG ; Chunqing ZHANG ; Lei LI ; Xuefeng LUO ; Yusheng SONG ; Yilong MA ; Tong DANG ; Hua XIANG ; Yun JIN ; Hui XUE ; Guiyun JIN ; Xiao LI ; Jiarui LI ; Shi ZHOU ; Changlu YU ; Song HE ; Lei YU ; Hongmei ZU ; Jun MA ; Yanming LEI ; Ke XU ; Xiaolong QI
Chinese Journal of Radiology 2024;58(4):437-443
Objective:To investigate the current situation of the use of transjugular intrahepatic portosystemic shunt (TIPS) for portal hypertension, which should aid the development of TIPS in China.Methods:The China Portal Hypertension Alliance (CHESS) initiated this study that comprehensively investigated the basic situation of TIPS for portal hypertension in China through network research. The survey included the following: the number of surgical cases, main indications, the development of Early-TIPS, TIPS for portal vein cavernous transformation, collateral circulation embolization, intraoperative portal pressure gradient measurement, commonly used stent types, conventional anticoagulation and time, postoperative follow-up, obstacles, and the application of domestic instruments.Results:According to the survey, a total of 13 527 TIPS operations were carried out in 545 hospitals participating in the survey in 2021, and 94.1% of the hospital had the habit of routine follow-up after TIPS. Most hospitals believed that the main indications of TIPS were the control of acute bleeding (42.6%) and the prevention of rebleeding (40.7%). 48.1% of the teams carried out early or priority TIPS, 53.0% of the teams carried out TIPS for the cavernous transformation of the portal vein, and 81.0% chose routine embolization of collateral circulation during operation. Most of them used coils and biological glue as embolic materials, and 78.5% of the team routinely performed intraoperative portal pressure gradient measurements. In selecting TIPS stents, 57.1% of the hospitals woulel choose Viator-specific stents, 57.2% woulel choose conventional anticoagulation after TIPS, and the duration of anticoagulation was between 3-6 months (55.4%). The limitation of TIPS surgery was mainly due to cost (72.3%) and insufficient understanding of doctors in related departments (77.4%). Most teams accepted the domestic instruments used in TIPS (92.7%).Conclusions:This survey shows that TIPS treatment is an essential part of treating portal hypertension in China. The total number of TIPS cases is far from that of patients with portal hypertension. In the future, it is still necessary to popularize TIPS technology and further standardize surgical indications, routine operations, and instrument application.
6.A new trichothecene macrolide from endophyte Myrothecium roridum associated with Trachelospermum jasminoides
Xu HAN ; Xiao-wen LI ; Feng ZHANG ; Lei FANG ; Li SHEN
Acta Pharmaceutica Sinica 2024;59(10):2889-2893
Three compounds were obtained from the crude extract of the fermentation broth of endophyte
7.Effect of culture time on immune-related membrane proteins of mouse dendritic cells and their exosomes
Li XIAO ; Shumin LUO ; Fang XU ; Pengpeng LU ; Enhong XING ; Weihua LI
The Journal of Practical Medicine 2024;40(7):941-947
Objective This study aims to investigate the impact of cultivation time on dendritic cells(DCs)and their derived exosomes′ expression of immune-related membrane proteins(CD80,MHC-Ⅰ,MHC-Ⅱ)and provides experimental evidence for future research.Methods Mouse bone marrow cells were induced to differentiate into DCs using GM-CSF and IL-4,followed by maturation stimulation withTNF-α.Exosomes were extracted using ultracentrifugation.Western blot and Amnis image flow cytometry were used to identify exosomes derived from mouse DCs.Amnis image flow cytometry was used to detect the expression of immune-related proteins CD80,CD11c,MHC-Ⅰ,and MHC-Ⅱ in mouse DCs and their exosomes.Results After 5 days of in vitro cultivation,more than 50%of dendritic cells expressed CD80,CD11c,MHC-Ⅰ,and MHC-Ⅱ,reaching the highest level on day 13.The positivity rates were as follows:CD80(97.29±0.63)%,CD11c(92.31±1.18)%,MHC-Ⅰ(97.91±0.49)%,and MHC-Ⅱ(97.91±0.49)%.The differences were statistically significant(P<0.001).The expression gradually decreased after day 13,but approximately 80%of DC cells still expressed MHC-Ⅰ and MHC-Ⅱ immune molecules on day 30.The expression levels of CD80,CD11c,and MHC-Ⅱ on the exosome membrane were highest on day 5 and then decreased overall with prolonged cultivation time,except for MHC-Ⅰ molecules.The differences were statistically significant(P<0.01).Conclusions In vitro-cultured mouse dendritic cells express high levels of immune-related membrane proteins and can be stably maintained for a long time under suitable culture conditions.The secreted exosomes also carry abundant immune-related membrane proteins,but no significant correlation was found between the immune-related proteins on the dendritic cell surface and the exosome membrane surface.
8.Hypertonic environment regulates cadherin expression and affects em-bryoid body differentiation
Jianyi XU ; Yindi WU ; Lijun FANG ; Hongjing JIANG ; Xuheng SUN ; Qing LIU ; Cong XIAO ; Zhanyi LING
Chinese Journal of Pathophysiology 2024;40(3):511-520
AIM:Given the uncertain impact of osmotic pressure on embryoid body(EB)differentiation,this study aimed to investigate the effects of increased osmotic pressure on EB differentiation and explore the potential relation-ship between this process and cadherin.METHODS:Polhethylene glycol 300(PEG 300)was used to increase the os-motic pressure of the culture medium used for cultivating EBs under both high osmotic pressure and standard culture condi-tions.The experimental design included a control group,an experimental group(hypertonic group),groups treated with varying concentrations of PEG 300,and an experimental group treated with an inhibitor.Western blot,RT-qPCR,AM/PI staining,CCK-8,and immunocytochemical staining was used to analyze the cell viability and the expression of CDH1 and CDH2 markers of the three germ layers,and pluripotency markers within the EBs.RESULTS:Hypertonicity did not af-fect cell viability.Significant differences were observed in the expression of the cadherin proteins CDH1 and CDH2 in EBs between the experimental and control groups;however,no cleartrend towards an EMT shift was observed.Specifically,CDH2 expression was significantly down-regulated in experimental group,showing a clear correlation with variations in os-motic pressure.Moreover,compared with control group,pluripotency markers in the EBs from experimental group exhibited significantly higher expression levels from the 2nd day to the 5th day.A substantial increase in the expression of mesoder-mal markers was also observed;however,a downward trend was observed for ectodermal markers in experimental group.Intervention using SB431542,which up-regulates CDH2 expression by affecting TGF-β signaling,reversed the expression trend of mesodermal and ectodermal markers in experimental group.CONCLUSION:Elevated osmotic pressure appears to enhance the mesodermal differentiation efficiency in EBs,possibly correlating with CDH1 and CDH2 changes induced by osmotic pressure.Therefore,this study emphasizes the significant role of osmotic pressure in stem cell applications.
9.Hepatitis C virus infection:surveillance report from China Healthcare-as-sociated Infection Surveillance System in 2020
Xi-Mao WEN ; Nan REN ; Fu-Qin LI ; Rong ZHAN ; Xu FANG ; Qing-Lan MENG ; Huai YANG ; Wei-Guang LI ; Ding LIU ; Feng-Ling GUO ; Shu-Ming XIANYU ; Xiao-Quan LAI ; Chong-Jie PANG ; Xun HUANG ; An-Hua WU
Chinese Journal of Infection Control 2024;23(1):1-8
Objective To investigate the infection status and changing trend of hepatitis C virus(HCV)infection in hospitalized patients in medical institutions,and provide reference for formulating HCV infection prevention and control strategies.Methods HCV infection surveillance results from cross-sectional survey data reported to China Healthcare-associated Infection(HAI)Surveillance System in 2020 were summarized and analyzed,HCV positive was serum anti-HCV positive or HCV RNA positive,survey result was compared with the survey results from 2003.Results In 2020,1 071 368 inpatients in 1 573 hospitals were surveyed,738 535 of whom underwent HCV test,4 014 patients were infected with HCV,with a detection rate of 68.93%and a HCV positive rate of 0.54%.The positive rate of HCV in male and female patients were 0.60%and 0.48%,respectively,with a statistically sig-nificant difference(x2=47.18,P<0.001).The HCV positive rate in the 50-<60 age group was the highest(0.76%),followed by the 40-<50 age group(0.71%).Difference among all age groups was statistically signifi-cant(x2=696.74,P<0.001).In 2003,91 113 inpatients were surveyed.35 145 of whom underwent HCV test,resulting in a detection rate of 38.57%;775 patients were infected with HCV,with a positive rate of 2.21%.In 2020,HCV positive rates in hospitals of different scales were 0.46%-0.63%,with the highest in hospital with bed numbers ranging 600-899.Patients'HCV positive rates in hospitals of different scales was statistically signifi-cant(X2=35.34,P<0.001).In 2020,12 provinces/municipalities had over 10 000 patients underwent HCV-rela-ted test,and HCV positive rates ranged 0.19%-0.81%,with the highest rate from Hainan Province.HCV posi-tive rates in different departments were 0.06%-0.82%,with the lowest positive rate in the department of pedia-trics and the highest in the department of internal medicine.In 2003 and 2020,HCV positive rates in the depart-ment of infectious diseases were the highest,being 7.95%and 3.48%,respectively.Followed by departments of orthopedics(7.72%),gastroenterology(3.77%),nephrology(3.57%)and general intensive care unit(ICU,3.10%)in 2003,as well as departments of gastroenterology(1.35%),nephrology(1.18%),endocrinology(0.91%),and general intensive care unit(ICU,0.79%)in 2020.Conclusion Compared with 2003,HCV positive rate decreased significantly in 2020.HCV infected patients were mainly from the department of infectious diseases,followed by departments of gastroenterology,nephrology and general ICU.HCV infection positive rate varies with gender,age,and region.
10.Quality Standard and Acute Toxicity Study of Triadica Cochinchinensis
Fang LYU ; Xiao XU ; Xiaopeng WU ; Yan YOU ; Dongjie SHAN ; Xueyang REN ; Xianxian LI ; Qingyue DENG ; Yingyu HE ; Gaimei SHE
Chinese Journal of Modern Applied Pharmacy 2024;41(4):512-519
OBJECTIVE
To establish the quality standard of Triadica cochinchinensis and to perform the acute toxicity study.
METHODS
Appearance properties, powder microscopic identification, and thin-layer chromatography(TLC) identification were researched. The specific chromatogram was established by HPLC. The content of cadmium(Cd), lead(Pb), arsenic(As), copper(Cu), and mercury(Hg) was determined by inductively coupled plasma-mass spectrometry(ICP-MS). Acute toxicity was studied by maximum dose.
RESULTS
The outer skin of herbs was dark brown, and the inner surface was light yellow brown and fibrous. Besides, crystal sheath fiber was common, and calcium oxalate clusters arranges in rows. In the TLC diagram of the test product, the fluorescent spots of the same color were displayed at the corresponding position of the control product(scopoletin, isofraxidin). Five common peaks were calibrated in the characteristic map and the three characteristic peaks(scopoletin, isofraxidin, dimethylfraxetin) were recognized. The content of the measured heavy metal elements was lower than the national limit standard. The linear correlation coefficient was R2 > 0.999. The precision, stability, repetitive RSD were < 10%. The average recovery rate of the added sample was 80%−120%, and the RSD was < 10%. The maximum dose of the acute toxicity test was 184.09 g·kg−1. The 14 d internal body mass, food intake, organ-body ratios, the serum glutamic pyruvic transaminase, glutamic oxaloacetic transaminase, blood urea nitrogen, and creatinine were not significantly different by comparing with the normal controls. Therefore, no significant toxicity was observed.
CONCLUSION
The established standard can provide a reference for evaluating the quality of Triadica cochinchinensis. The heavy metal content of ten batches of medicinal materials is within the safe range. Acute toxicity test show that there is no obvious significant adverse teactions after oral administration, and the safe dose range is large, which can provide a reference for the subsequent development and utilization.


Result Analysis
Print
Save
E-mail